Using service robots to counter the SARS-CoV-2 virus spread in enclosed medical premises
https://doi.org/10.25016/2541-7487-2021-0-2-104-114
Abstract
Relevance. Spreading of the COVID-19 epidemic highlighted a number of new challenges related to protecting the health of first-line emergency and specialized medical personnel, as the high incidence of COVID-19 among healthcare workers can lead to risks of health system collapse. At the same time, in the interests of personnel safety, robotic technologies can be applied for heavy and dangerous works of air disinfection in enclosed medical environments.
Intention: To present current views on robotic air disinfection of enclosed medical environments based on the analysis of robot prototypes developed to counteract the spread of the SARS-CoV-2 virus.
Methodology. Analysis of tasks related to maintaining a safe working environment for healthcare professionals was based on the description of the functionality and specifications of robots designed to decontaminate the working environment of medical personnel deployment. When systematizing solutions for robot design, the main criteria used were the selection of control modes (Automatic, Supervisory, Manual and their combinations), hardware for disinfection in the external environment and in premises, and features of Human-Machine interaction for the safety of robotic support in enclosed medical premises.
Results and Discussion. The features of using service (disinfection) robots are formulated based on epidemiological knowledge of the primary transmission routes and methods of disinfection of premises. It is shown that the tactical and technical characteristics of existing models of Autonomous mobile robots are mainly aimed at implementing unmanned technologies. Solving problems of massive processing of objects of the external environment, as well as vast areas of airports, stadiums, hypermarkets, warehouses, vehicles in a reasonable time involves automatic modes and/or Supervisory control of such robots by the operator in remote mode. The use of disinfection robots in enclosed medical premises requires additional consideration of the factor of introducing robots into the social environment. From these positions and on the basis of the selected prototypes, the prospects are considered for using a group of small mobile robots equipped with systems that enhance sensory and communication capabilities in the work environment.
Conclusion. Using robots to reduce risks of the SARS-CoV-2 contamination opens the way to improving the working conditions of healthcare professionals who are at risk of COVID-19. The proposed methods of robotic disinfection of medical premises also help reduce the mental strain of being in a dangerous environment by expanding robotic support for decontamination of premises and flexible response to changes in the environment
About the Authors
I. B. UshakovRussian Federation
Igor Borisovich Ushakov – Dr. Med. Sci. Prof., Chief Researcher
46, Zhivopisnaya Str., Moscow, 123182
A. V. Polyakov
Russian Federation
Alexey Vasilievich Polyakov – PhD Med. Sci., Head of Department
76a, Khoroshevskoe Highway, Moscow, 123007
V. M. Usov
Russian Federation
Vitaly Mikchailovich Usov – Dr. Med. Sci. Prof., Leading Researcher
76a, Khoroshevskoe Highway, Moscow, 123007
M. M. Knyazkov
Russian Federation
Maxim Mikchailovich Knyazkov – PhD Tech. Sci., Senior Researcher of laboratory of robotics and mMechatronics
101-1, Vernadskogo Ave., Moscow, 119526
A. I. Motienko
Russian Federation
Anna Igorevna Motienko – PhD Tech. Sci., Senior Researcher of laboratort of big data technologies in socio-cyberphysical systems
39, 14th Line V.O., St. Petersburg, 199178
References
1. At’kov O.Yu., Gorokhova S.G., Pfaf V.F. Koronavirusnaya infektsiya – novaya problema v professional’noi zabolevaemosti meditsinskikh rabotnikov. [COVID-19 in health care workers. A new problem in occupational medicine]. Meditsina truda i promyshlennaya ekologiya. [Russian Journal of Occupational Health and Industrial Ecology]. 2021. Vol. 61, N 1. Pp. 40–48. DOI: 10.31089/1026-9428-2021-61-1-40-482021 (In Russ.)
2. Briko N.I., Kagramanyan I.N., Nikiforov V.V., Suranova TG. [et al.]. Pandemiya COVID-19. Mery bor’by s ee rasprostraneniem v Rossiiskoi Federatsii [Pandemic COVID-19. Prevention Measures in the Russian Federation]. Epidemiologiya i Vaktsinoprofilaktika [Epidemiology and Vaccinal Prevention.]. 2020. Vol. 19, N 2. Pp. 4–12. DOI: 10.31631/2073-3046-2020-19-2-4-12 (In Russ).
3. Briko N.I., Zueva L.P., Ljubimova A.V. [et al.]. Profilaktika zanosa i rasprostraneniya COVID-19 v meditsinskikh organizatsiyakh. Vremennye metodicheskie rekomendatsii. Versiya 2 ot 14.05.2020 [Prevention of the importation and spread of COVID-19 in medical organizations. Temporary guidelines. Version 2 from 14/05/2020]. 2020. 46 p. URL: http://nasci.ru/?id=11907 (In Russ).
4. Vasil’ev A.V., Lopota A.V. Utochnenie tiporazmernykh grupp nazemnykh distantsionno upravlyaemykh mashin dlya primeneniya v opasnykh dlya cheloveka usloviyakh [Mass-Dimensional Groups Elaboration of Ground Remotely Operated Vehicles for Hazardous Environments]. Nauchno-tekhnicheskie vedomosti SPbGPU [Scientific and technical bulletin of SPbSPU]. 2015. N 1. Pp. 226–234. (In Russ).
5. Enikolopov S.N., Medvedeva T.I., Boiko L.A. [et al.]. Prinyatie moral’nykh reshenii vo vremya pandemii COVID-19. [Making moral decisions during the COVID-19 pandemic]. Vestnik Moskovskogo Universiteta. Seriya 14. Psikhologiya. [Moscow University Psychology Bulletin. Series 14. Psychology]. 2020. N 4. Pp. 22–43. (In Russ).
6. Efimov A.R., Gonnochenko A.S., Payson D.B. [et al.]. Prakticheskoe primenenie robotov i soputstvuyushchikh tekhnologii v bor’be s pandemiei COVID-19 [Practical Use of Robots and Related Technologies in Counteraction to COVID-19 Pandemic]. Robototekhnika i tekhnicheskaya kibernetika [Robotics and Technical Cybernetics]. 2020. Vol. 8, N 2. Pp. 87–100. (In Russ).
7. Kravchenko Yu.V., Demkin A.D., Kobryanova I.V. Profilaktika stress-assotsiirovannykh rasstroistv u meditsinskogo personala pri rabote v usloviyakh neblagopriyatnoi epidemiologicheskoi obstanovki [Psychological Characteristics of Medical Personnel and Cadet (Student) in Conditions Adversive Epidemic Situation]. Izvestiya Rossiiskoi Voenno-meditsinskoi akademii [Russian Military Medical Academy Reports]. 2020. Vol. 39. N S3-4. Pp. 136–140. (In Russ).
8. Nikiforov V.V., Suranova T.G., Komarevtsev V.N. [et al.]. Mery protivodeistviya zanosu i rasprostraneniyu koronavirusnoi infektsii covid-19 v meditsinskikh organizatsiyakh [Countermeasures Against the Introduction and Spread of Coronavirus Infection COVID-19 in Medical Organizations]. Meditsina ekstremal’nykh situatsii [Medicine of Extreme Situations]. 2020. N 3. Pp. 77–82. DOI: 10.47183/mes.2020.008. (In Russ).
9. Nosik N.N., Nosik D.N., Chizhov A.I. Sravnitel’nyi analiz virulitsidnoi effektivnosti dezinfitsiruyushchikh sredstv [A Comparative Analysis of Virucidal Efficiency of Biocide Agents]. Voprosy virusologii [Problems of Virology]. 2017. Vol. 62, N 1. Pp. 41–45. DOI 10.18821/0507-4088-2017-62-1-41-45. (In Russ).
10. Padun M.A. Riski psihicheskoj travmatizacii sredi medicinskih rabotnikov [Risks of Psychological Trauma in Health Care Workers During COVID-19 Pandemic]. Social’naja i jekonomicheskaja psihologija [Social and economic psychology»]. 2020. Vol. 5, N 2. Pp. 309–329. DOI: 10.38098/ipran.sep.2020.18.2.011. (In Russ).
11. Rogatkin D.A., Lapitan D.G. Interfeis obshcheniya s servisnym meditsinskim robotom [Interface of Communication with Service Medical Robot]. Vestnik MGTU im. N.E. Baumana. Ser. Priborostroenie [Herald of the Bauman Moscow State Technical University. Series Instrument Engineering]. 2017. N 1. Pp. 35–48. DOI: 10.18698/0236-3933-2017-1-35–48. (In Russ).
12. Rogatkin D.A., Lapitan D.G., Lapaeva L.G. Kontseptsiya avtonomnykh mobil’nykh servisnykh robotov dlya meditsiny [Conception of the mobile autonomous service medical robots]. Biomeditsinskaya radioelektronika [Biomedicine Radioengineering]. 2013. N 5. Pp. 46–56. (In Russ).
13. Ronzhin A.L., Yusupov R.M. Mnogomodal’nye interfeisy avtonomnykh mobil’nykh robototekhnicheskikh komplekso [Multimodal Interfaces for Autonomous Mobile Robotic SystemS]. Izvestiya YuFU. Tekhnicheskie nauki [Izvestiya SFedU. Engineering Sciences]. 2015. N 1. Pp. 195–206. (In Russ).
14. Smirnova E.Yu., Spassky B.A. Organizatsiya supervizornogo upravleniya v stsenariyakh ekstremal’noi robototekhniki [Organization of supervisory control in scenarios of extreme robotics]. Robototekhnika i tekhnicheskaya kibernetika [Robotics and Technical Cybernetics]. 2020. Vol. 8, N 4. Pp. 245–258. (In Russ).
15. Spassky B.A. Teleupravlenie v ekstremal’noi robototekhnike [Teleoperation in extreme robotics]. Robototekhnika i tekhnicheskaya kibernetika [Robotics and Technical Cybernetics]. 2020. Vol. 8. N 2. Pp. 101–111. (In Russ).
16. Azeta J., Bolu C., Abioye A.A., Oyawale F.A. A review on humanoid robotics in healthcare. MATEC Web of Conferences. 2018. Vol. 153, N 5. Art. 02004. DOI: 10.1051/matecconf/201815302004.
17. Azuma K., Yanagi U., Kagi N. [et al.]. Environmental factors involved in SARS-CoV-2 transmission: effect and role of indoor environmental quality in the strategy for COVID-19 infection control. Environmental health and preventive medicine. 2020. Vol. 25, N 1. Pp. 1–16. DOI: 10.1186/s12199-020-00904-2.
18. Bahl P., Doolan C., De Silva C. [et al.]. Airborne or droplet precautions for health workers treating COVID-19? The Journal of infectious diseases. 2020. Apr. 16. Art. 189. DOI: 10.1093/infdis/jiaa189.
19. Buonanno M., Welch D., Shuryak I., Brenner D.J. Far-UVC light (222 nm) efficiently and safely inactivates airborne human coronaviruses. Scientific Reports. 2020. Vol. 10, N 1. Pp. 1–8. DOI: 10.1038/s41598-020-67211-2.
20. Galbraith N., Boyda D., McFeeters D., Hassan T. The mental health of doctors during the COVID-19 pandemic. BJ Psych Bulletin. 2020. Vol. 45, N 2. Pp. 93–97. DOI: 10.1192/bjb.2020.44.
21. Gold J.A. Covid-19: adverse mental health outcomes for healthcare workers. BMJ. 2020. Vol. 369. Art. m1815. DOI: 10.1136/bmj.m1815.
22. Islam M.S., Rahman K.M., Sun Y. [et al.]. Current knowledge of COVID-19 and infection prevention and control strategies in healthcare settings: A global analysis. Infection Control & Hospital Epidemiology. 2020. Vol. 41, N 10. Pp. 1196– 1206. DOI: 10.1017/ice.2020.237.
23. HOSPI – Panasonic’s Autonomous Delivery Robots – New Models Make Debutch. Web-Site. URL: https://news. panasonic.com/global/stories/2019/69861.html
24. Kovach C.R., Taneli Y., Neiman T. [et al.]. Evaluation of an ultraviolet room disinfection protocol to decrease nursing home microbial burden, infection and hospitalization rates. BMC Infectious Diseases. 2017. Vol. 17, N 1. Art. 186. DOI: 10.1186/s12879-017-2275-2.
25. Meyerowitz E.A., Richterman A., Gandhi R.T., Sax P.E. Transmission of SARS-CoV-2: A Review of Viral, Host, and Environmental Factors. Annals of Internal Medicine. 2021. Vol. 174, N 1. Pp. 69–79. DOI: 10.7326/M20-5008.
26. Moitra M., Rahman M., Collins P.Y. [et al.]. Mental Health Consequences for Healthcare Workers During the COVID-19 Pandemic: A Scoping Review to Draw Lessons for LMICs. Frontiers in psychiatry. 2021. Vol. 12. Art. 602614. DOI: 10.3389/fpsyt.2021.602614.
27. Okamura A.M. Mataricˆ M.J., Christensen H.I. Medical and HealthCare Robotics. IEEE Robotics & Automation Magazine. 2010. Vol. 17, Iss. 3. Pp. 26–37. DOI: 10.1109/MRA.2010.937861.
28. Sommerstein R., Fux C.A., Vuichard-Gysin D. [et al.]. Risk of SARS-CoV-2 transmission by aerosols, the rational use of masks, and protection of healthcare workers from COVID-19. Antimicrobial Resistance & Infection Control. 2020. Vol. 9, N 1. Art. 100. DOI: 10.1186/s13756-020-00763-0.
29. Stadnytskyi V., Bax C.E., Bax A., Anfinrud P. The airborne lifetime of small speech droplets and their potential importance in SARS-CoV-2 transmission. Proceedings of the National Academy of Sciences. 2020. Vol. 117, N 22. Pp. 11875–11877. DOI: 10.1073/pnas.2006874117.
30. Tang S., Mao Y., Jones R.M. [et al.]. Aerosol transmission of SARS-CoV-2? Evidence, prevention and control. Environment international. 2020. Vol. 144. Art. 106039. DOI: 10.1016/j.envint.2020.106039.
31. Wang W., Xu Y., Gao R. [et al.]. Detection of SARS-CoV-2 in Different Types of Clinical Specimens. JAMA. 2020. 2020. Vol. 323, N 18. Pp. 1843–1844. doi: 10.1001/jama.2020.3786.
32. Wilson N.M., Norton A., Young F.P., Collins D.W. Airborne transmission of severe acute respiratory syndrome coronavirus-2 to healthcare workers: a narrative review. Anaesthesia. 2020. Vol. 75, N 8. Pp. 1086–1095. DOI: 10.1111/anae.15093.
Review
For citations:
Ushakov I.B., Polyakov A.V., Usov V.M., Knyazkov M.M., Motienko A.I. Using service robots to counter the SARS-CoV-2 virus spread in enclosed medical premises. Medicо-Biological and Socio-Psychological Problems of Safety in Emergency Situations. 2021;(2):104-114. (In Russ.) https://doi.org/10.25016/2541-7487-2021-0-2-104-114