Preview

Medicо-Biological and Socio-Psychological Problems of Safety in Emergency Situations

Advanced search

New approaches to biological dosimetry: development of complex biodosimetric systems (review of foreign literature)

https://doi.org/10.25016/2541-7487-2018-0-4-90-96

Abstract

Relevance. In case of emergency due to large-scale radiation accidents, biological dosimetry becomes a critical tool for early radiation dose assessment and enables identification of individuals exposed to ionizing radiation and facilitates further medical follow-up decisions.

Intention. To assess the feasibility of a number of biological markers for bioindication and biodosimetry purposes based on literature data.

Methodology. Literature sources were searched in MEDLINE databases, PubMed, CyberLeninka, elibrary.ru, using the terms: radiation, irradiation, biodosimetry. The review presents the results of studies from full-text sources of literature in English.

Results and Discussion. Depending on an accidental exposure scenario, various biodosimetry techniques should be used to assess radiation doses with optimal accuracy and speed. In addition to physical methods and clinical techniques used to assess radiation doses, biological dosimetry defines a level of ionizing radiation exposure for certain individuals and is useful in making decisions about medical treatment strategy. To date, combined use of several biological markers within a biodosimetry system providing reliable radiation dose estimates.

Conclusion. Analysis of the data presented in the review showed that combined use of several biological markers and development of a complex biodosimetric system will provide a more accurate estimate of doses, which is especially important in case of radiation accidents and incidents when physical dosimetry data are not available.

About the Authors

N. V. Sotnik
Southern Urals Biophysics Institute
Russian Federation

Nataliya Valeryevna Sotnik – Research Associate, Federal state unitary enterprise 

Ozyorskoe shosse, 19, Ozyorsk, Chelyabinsk region, 456780



V. L. Rybkina
Southern Urals Biophysics Institute
Russian Federation

Valentina L’vovna Rybkina – Dr. Med. Sci., Head of Laboratory

Ozyorskoe shosse, 19, Ozyorsk, Chelyabinsk region, 456780



T. V. Azizova
Southern Urals Biophysics Institute
Russian Federation

Tamara Vasil’evna Azizova – PhD Med. Sci., Deputy Director, Head of Clinical Department

Ozyorskoe shosse, 19, Ozyorsk, Chelyabinsk region, 456780



References

1. Azizova T.V., Osovets S.V., Day R.D. [et al.]. Predictability of acute radiation injury severity. Health Phys. 2008. Vol. 94, N 3. Pp. 255–263. DOI: 10.1097/01. HP.0000290833.66789.df.

2. Bertho J.M., Roy L. A rapid multiparametric method for victim triage in cases of accidental pro tracted irradiation or delayed analysis. Br. J. Radiology. 2009. Vol. 82, N 981. Pр. 764–770. DOI: 10.1259/ bjr/49063618.

3. Bertho J.M., Roy L., Souidi M. [et al.]. New biological indicators to evaluate and monitor radiation-induced damage: an accident case report. Radiat. Res. 2008. Vol. 169, N 5. Pр. 543–550. DOI: 10.1667/ RR1259.1.

4. Berwick M., Vineis P. Markers of DNA repair and susceptibility to cancer in humans: an epidemiologic review. J. National Cancer Institute. 2000. Vol. 92, N 11. Pр. 874–897.

5. Blakely W.F., Miller A.C., Grace M.B. [et al.]. Radiation biodosimetry: applications for spaceflight. Adv. Space Res. 2003. Vol. 31, N 6. Pр. 1487–1493.

6. Blakely W.F., Miller A.C., Muderhwa J.M. [et al.]. Development and Validation of Radiation-Responsive Protein Bioassays for Biodosimetry. Bethesda : Appli cations Armed Forces Radiobiology Research Institute, 2005. No NATO RTG-099 2005. 12 p.

7. Blakely W.F., Ossetrova N.I., Manglapus G.L. [et al.]. Amylase and blood cell-count hematological radiation-injury biomarkers in a rhesus monkey radia tion model – use of multiparameter and integrated biological dosimetry. Radiat. Meas. 2007. Vol. 42, N 6-7. Pp. 1164–1170.

8. Blakely W.F., Ossetrova N.I., Whitnall M.H. [et al.]. Multiple parameter radiation injury assessment using a nonhuman primate radiation model-biodosimetry applications. Health Phys. 2010. Vol. 98, N 2. Pp. 153– 159. DOI: 10.1097/HP.0b013e3181b0306d.

9. Blakely W., Sandgren D.J., Nagy V. [et al.]. Murine partial-body radiation exposure model for biodosimetry studies – preliminary report. Radiat. Meas. 2011. Vol. 46, N 9. Pp. 898–902.

10. Blakely W.F., Sandgren D.J., Nagy V. [et al.]. Further biodosimetry investigations using murine partial-body irradiation model. Radiat. Prot. Dosim. 2014. Vol. 159, N 1-4. Pp. 46–51. DOI: 10.1093/rpd/ncu127.

11. Bolduc D.L., Villa V., Sandgren D.J. [et al.]. Application of multivariate modeling for radiation injury assessment: a proof of concept. Comput. Math. Methods Med. 2014. N 2014. Pp.17. DOI: 10.1155/2014/685286.

12. Citrin D.E., Hitchcock Y.J., Chung E.J. [et al.]. Determination of cytokine protein levels in oral secretions in patients undergoing radiotherapy for head and neck malignancies. Radiat. Oncology. 2012. N 7. P. 64. DOI: 10.1186/1748-717X-7-64.

13. Effects of ionizing radiation. United Nations Scientific Committee on the Effects of Atomic Radiation. UNSCEAR 2006 Report to the General Assembly, with Scientific Annexes, 2008. Vol. 1. 392 p.

14. Gourmelon P., Benderitter M., Bertho J.M. [et al.]. European consensus on the medical management of acute radiation syndrome and analysis of the radiation accidents in Belgium and Senegal. Health Phys. 2010. Vol. 98, N 6. Pp. 825–832. DOI: 10.1097/ HP.0b013e3181ce64d4.

15. Herodin F., Grenier N., Arvers Ph. [et al.]. Multiparameter Biodosimetry Approach to Assess Totaland Partial-Body Irradiation in a Baboon Model. La Tronche: Deˆpartement de Radiobiologie, Institut de Recherche Biomeˆdicale des Armeˆes, 2012. 17 p.

16. Homer M.J., Raulli R., DiCarlo-Cohen A.L. [et al.]. United States department of health and human services biodosimetry and radiological/nuclear medical countermeasure programs. Radiat. Prot. Dosim. 2016. Vol. 171, N 1. Pp. 85–98. DOI: 10.1093/rpd/ncw226.

17. International Atomic Energy Agency (IAEA). Cytogenetic Dosimetry: Applications in Preparedness for and Response to Radiation Emergencies. Vienna: IAEA, 2011. 247 p.

18. Kim D., Marchetti F., Chen Z. [et al.]. Nanosensor dosimetry of mouse blood proteins after exposure to ionizing radiation. Scientific reports. 2013. N 3. Pp. 2234. DOI: 10.1038/srep02234.

19. Koenig K.L., Goans R.E., Hatchett R.J. [et al.]. Medical treatment of radiological casualties: cur rent concepts. Annals of emergency medicine. 2005. Vol. 45, N 6. Pp. 643–652. DOI: 10.1016/ j.annemergmed.2005.01.020.

20. Larionov A.V., Sinitsky M.Y., Druzhinin V.G. [et al.]. DNA excision repair and double-strand break repair gene polymorphisms and the level of chromosome aberration in children with long-term exposure to radon. Int. J. Radiat. Biol. 2016. Vol. 92, N 8. Pp. 466– 474. DOI: 10.1080/09553002.2016.1186303.

21. Lee Y., Kim Y.J., Choi Y.J. [et al.]. Radiation-induced changes in DNA methylation and their relationship to chromosome aberrations in nuclear power plant workers. Int. J. Radiat. Biol. 2015. Vol. 91, N 2. Pp. 142–149. DOI: 10.3109/09553002.2015.969847.

22. Li H., Wang L., Jiang Z. [et al.]. Long-term health effects of persistent exposure to low-dose lr192 gamma-rays. Experimental and therapeutic medicine. 2016. Vol. 12, N 4. Pp. 2695–2701. DOI: 10.3892/ etm.2016.3682.

23. Liu H., Wang Z., Zhang X. [et al.]. Selection of candidate radiation biomarkers in the serum of rats exposed to gamma-rays by GC/TOFMS-based metabolomics. Radiat. Prot. Dosim. 2013. Vol. 154, N 1. Pp. 9–17. DOI: 10.1093/rpd/ncs138.

24. Moore H.D., Ivey R.G., Voytovich U.J. [et al.]. The human salivary proteome is radiation responsive. Radiat. Res. 2014. Vol. 181, N 5. Pp. 521–530. DOI: 10.1667/RR13586.1.

25. Mullenders L., Atkinson M., Paretzke H. [et al.]. Assessing cancer risks of low-dose radiation. Nature reviews. Cancer. 2009. Vol. 9, N 8. Pp. 596–604. DOI: 10.1038/nrc2677.

26. Nakachi K., Hayashi T., Imai K., Kusunoki Y. Perspectives on cancer immune-epidemiology. Cancer science. 2004. Vol. 95, N 12. Pp. 921–929.

27. Ossetrova N.I., Blakely W.F. Multiple blood-proteins approach for early-response exposure assessment using an in vivo murine radiation model. Int. J. Radiat. Biol. 2009. Vol. 85, N 10. Pp. 837–850.

28. Ossetrova N.I., Condliffe D.P., Ney P.H. [et al.]. Early-response biomarkers for assessment of radiation exposure in a mouse total-body irradiation model. Health Phys. 2014. Vol. 106, N 6. Pp. 772–786. DOI: 10.1097/HP.0000000000000094.

29. Ossetrova N.I., Sandgren D.J., Blakely W.F. Protein biomarkers for enhancement of radiation dose and injury assessment in nonhuman primate total-body irradiation model. Radiat. Prot. Dosim. 2014. Vol. 159, N 1-4. Pp. 61–76. DOI: 10.1093/rpd/ncu165.

30. Ossetrova N.I., Sandgren D.J., Gallego S., Blakely W.F. Combined approach of hematological biomarkers and plasma protein SAA for improvement of radiation dose assessment triage in biodosimetry applications. Health Phys. 2010. Vol. 98, N 2. Pp. 204– 208. DOI: 10.1097/HP.0b013e3181abaabf.

31. Pannkuk E.L., Laiakis E.C., Authier S. [et al.]. Global metabolomic identification of long-term dose-dependent urinary biomarkers in nonhuman primates exposed to ionizing radiation. Radiat. Res. 2015. Vol. 184, N 2. Pp. 121–133.

32. Pernot E., Hall J., Baatout S. [et al.]. Ionizing radiation biomarkers for potential use in epidemiological studies. Mutat. Res. 2012. Vol. 751, N 2. Pp. 258–286. DOI: 10.1016/j.mrrev.2012.05.003.

33. Prasanna P.G., Blakely W.F., Bertho J.M. [et al.]. Synopsis of partial-body radiation diagnostic biomarkers and medical management of radiation injury workshop. Radiat. Res. 2010. Vol. 173, N 2. Pp. 245–253. DOI: 10.1667/RR1993.1.

34. Rao B.S. Biological indicators of absorbed radiation and biological dosimetry. BARC News Letter. 2002. N 224. Pp. 6–17.

35. Tichy A., Kabacik S., O’Brien G. [et al.]. The first in vivo multiparametric comparison of different radiation exposure biomarkers in human blood. PLoS ONE. 2018. Vol. 13, N 2. DOI: 10.1371/journal. pone.0193412.

36. Turner H.C., Sharma P., Perrier J.R. [et al.]. The RABiT: High Throughput Technology for Assessing Global DSB Repair. Radiat. Environ. Biophys. 2014. Vol. 53, N 2. Pp. 265–272. DOI: 10.1007/s00411-0140514-0.

37. Twardella D., Chang-Claude J. Studies on radiosensitivity from an epidemiological point of view – overview of methods and results. Radiotherapy and oncology. 2002. Vol. 62, N 3. Pp. 249–260.

38. Waller E., Millage K., Blakely W.F. [et al.]. Overview of hazard assessment and emergency planning software of use to RN first responders. Health Phys. 2009. Vol. 97, N 2. Pp. 145–156.


Review

For citations:


Sotnik N.V., Rybkina V.L., Azizova T.V. New approaches to biological dosimetry: development of complex biodosimetric systems (review of foreign literature). Medicо-Biological and Socio-Psychological Problems of Safety in Emergency Situations. 2018;(4):90-96. (In Russ.) https://doi.org/10.25016/2541-7487-2018-0-4-90-96

Views: 1364


Creative Commons License
This work is licensed under a Creative Commons Attribution 4.0 License.


ISSN 1995-4441 (Print)
ISSN 2541-7487 (Online)