Preview

Medicо-Biological and Socio-Psychological Problems of Safety in Emergency Situations

Advanced search

Experimental study of glutathione disulfide organic salt and inosine hemostimulating activity mechanisms in conditions of acute radiation exposure

https://doi.org/10.25016/2541-7487-2016-0-1-79-84

Abstract

In experiments on mice exposed to acute external gamma radiation, hemostimulating activity mechanisms of glutathione disulfide organic salt and inosine – the medicament molixan — were studied. Molixan was administered intraperitoneally at a dose of 30 mg / kg 1 time a day for 10 days after irradiation. It was found that irradiation at a dose of 3.5 Gy caused the death of 30 % of the mice, and molixan reduced mortality in irradiated animals to 10 %. The ability of molixan to accelerate post-radiation recovery of bone marrow hematopoiesis by stimulating myelocytic and megakaryocytic cell lines was demonstrated, with resulting increase in the number of white blood cells and platelets in the peripheral blood. Hemostimulating activity of molixan can be mediated by increased production of hematopoietic cytokines– interleukin-1, interleukin-2, interleukin-6, granulocyte-macrophage and granulocyte colony-stimulating factors – by splenocytes.

About the Authors

A. A. Yartseva
Saint-Petersburg State Pediatric Medical University
Russian Federation

Dr. Med. Sci., Assistant of the Department of Dentistry, Saint-Petersburg State Pediatric Medical University (Russia, 194100, Saint-Petersburg, Litovskaya Str., 2)



A. E. Antushevich
The Kirov Military Medical Academy
Russian Federation

Dr. Med. Sci. Prof., Senior Researcher of the Research Laboratory of the Military Therapy, Kirov Military Medical Academy (Russia, 194044, Saint-Petersburg, Academica Lebedeva Str., 6)



A. N. Grebenyuk
The Kirov Military Medical Academy
Russian Federation

Dr. Med. Sci. Prof., Professor of the Department of Military Toxicology and Medical Defense, Kirov Military Medical Academy (Russia, 194044, Saint-Petersburg, Academica Lebedeva Str., 6)



References

1. Antonov V.G., Antushevich A.E., Burova E.B., Vasilenko K.P. Vozmozhnyi mekhanizm moduliruyushchego vliyaniya preparata glutoksim na regulyatornoe deistvie tsitokinov [A possible mechanism of the modulating effect of glutoxim on the regulatory action of cytokines]. Tsitokiny i vospalenie [Cytokines & Inflammation]. 2005. N 2. Pp. 75–76. (In Russ.)

2. Balonov M.I. Posledstviya Chernobylya: 20 let spustya [Consequences of Chernobyl: 20 years later]. Radiatsiya i risk [Radiation & Risk]. 2006. Vol. 15, N 3/4. Pp. 97–119. (In Russ.)

3. Baranov A.E., Rozhdestvenskii L.M. Analiticheskii obzor skhem lecheniya ostroi luchevoi bolezni, ispol’zuemykh v eksperimente i klinike [Analytical review of the treatment regimens of acute radiation sickness, used in the experiment and clinic]. Radiatsionnaya biologiya. Radioekologiya [Radiation Biology. Radioecologу]. 2008. Pp. 48, N 3. Pp. 287–302. (In Russ.)

4. Berman A.E., Kozlova N.I., Morozevich G.E. Struktura i signal’nye funktsii integrinov (obzor) [Structure and signaling function of integrins (review)]. Biokhimiya [Biochemistry]. 2003. Vol. 68. N 12. Pp. 1597–1615. (In Russ.)

5. Burova E.B., Vasilenko K.P., Nikol’skii N.N., Antonov V.G. Okislennyi glutation vyzyvaet aktivatsiyu retseptora epidermal’nogo faktora rosta i MAR-kinaz ERK-1,2 [Oxidized glutathione causes activation of the epidermal growth factor receptor and MAP kinase ERK-1,2]. Tsitologiya [Cytology]. 2006. Vol. 48, N 6. Pp. 500–507. (In Russ.)

6. Butomo N.V., Grebenyuk A.N., Legeza V.I. [et al.]. Osnovy meditsinskoi radiobiologii [Basics of Medical Radiobiology]. Ed. by I.B. Ushakov. Sankt-Peterburg. 2004. 384 p.

7. Gus’kova A.K. Meditsinskie posledstviya avarii na Chernobyl’skoi AES. Osnovnye itogi i nereshennye problemy [Health effects of the Chernobyl accident. Main results and unsolved problems] Meditsinskaia radiologiia i radiatsionnaia bezopasnost [Medical Radiology and Radiation Safety]. 2010. Vol. 55, N 3. Pp. 17–28.

8. Ketlinskii S.A., Simbirtsev A.S. Tsitokiny [Cytokines]. Sankt-Peterburg. 2008. 552 p. (In Russ.)

9. Kozinets G.I., Makarova V.A. Issledovanie sistemy krovi v klinicheskoi praktike [Blood system analysis in clinical practice]. Moskva. 1997. 480 p. (In Russ.)

10. Kulinskii V.I. Sistema glutationa [Glutathione system]. Biomeditsinskaya khimiya [Biomedical Chemistry]. 2009. Vol. 55, N 3. Pp. 365–380. (In Russ.)

11. Rebrova O.Yu. Statisticheskii analiz meditsinskikh dannykh: primenenie paketa prikladnykh programm Statistica [Statistical analysis of medical data: Statistica package applications]. Moskva. 2002. 312 p. (In Russ.)

12. Rozhdestvenskii L.M. Aktual’nye voprosy poiska i issledovaniya protivoluchevykh sredstv [Actual questions of research and study of radioprotective agents]. Radiatsionnaya biologiya. Radioekologiya [Radiation Biology. Radioecologу]. 2013. Vol. 53, N 5. Pp. 513–520. (In Russ.)

13. Federal’nyi zakon ot 09.01.1996 N 3-FZ «O radiatsionnoi bezopasnosti naseleniya» [Federal Law from 09.01.1996 number 3-FZ (ed. from 19.07.2011) «On Radiation Safety of the Population»]. Rossiiskaya gazeta [Russian Newspaper]. N 160, 25.07.2011. (In Russ.)

14. Dainiak N. Rationale and recommendations for treatment of radiation injury with cytokines. Health Phys. 2010. Vol. 98, N 6. Pp. 838–842.

15. Diaz-Montero C.M., Wang Y., Shao L. [et al.]. The glutathione disulfide mimetic NOV-002 inhibits cyclophosphamideinduced hematopoietic and immune suppression by reducing oxidative stress. Free Radical Biology & Medicine. 2012. Vol. 52. Pp. 1560–1568.

16. Drouet M., Hérodin F. Radiation victim management and the haematologist in the future: time to revisit therapeutic guidelines? Int. J. Radiat. Biol. 2010. Vol. 86. Pp. 636–648.

17. Filomeni G., Rotilio G., Ciriolo M.R. Cell signaling and the glutathione redox system. Biochem. Pharmacol. 2002. Vol. 64. Pp. 1057–1064.

18. Filomeni G., Rotilio G., Ciriolo M.R. Glutathione disulfide induces apoptosis in U937 cells by a redox-mediated p38 MAP kinase pathway. FASEB J. 2003. Vol. 17. Pp. 64–66.

19. Fliedner T.M., Friesecke I., Beyrer K. [et al.]. Medical management of radiation accidents: Manual on the acute radiation syndrome (METREPOL). Oxford : The British Institute of Radiology, 2001. 66 p.

20. Jordan P.A., Gibbins J.M. Extracellular disulfide exchange and the regulation of cellular function. Antioxid. Redox Signal. 2006. Vol. 8, N 3/4. Рp. 312–324.

21. Kluczyk A., Cebrat M., Zbozien-Pacamaj R. [et al.]. On the peptide-antipeptide interactions in interleukin-1 receptor system. Acta Biochem. Pol. 2004. Vol. 51, N 1. Pp. 57–66.

22. Koenig K.L., Goans R.E., Hatchett R.J. [et al.]. Medical treatment of radiological casualties: current concepts. Ann. Emergency Med. 2005. Vol. 45. Pp. 643–652.

23. Pompella A., Visvikis A., Paolicchi A. [et al.]. The changing faces of glutathione, a cellular protagonist. Biochem. Pharmacol. 2003. Vol. 66. Pp. 1499–1503.

24. Townsend D.M., He L., Hutchens S. [et al.]. NOV002, a glutathione disulfide mimetic, as a modulator of cellular redox balance. Cancer Res. 2008. Vol. 68. Pp. 2870–2877.

25. Waselenko J.K., McVittie T.J., Blakely W.F. [at al.]. Medical management of the acute radiation syndrome: recommendations of the Strategic National Stockpile Radiation Working Group. Ann. Intern. Med. 2004. Vol. 140, N 12. Pp. 1037–1051.


Review

For citations:


Yartseva A.A., Antushevich A.E., Grebenyuk A.N. Experimental study of glutathione disulfide organic salt and inosine hemostimulating activity mechanisms in conditions of acute radiation exposure. Medicо-Biological and Socio-Psychological Problems of Safety in Emergency Situations. 2016;(1):79-84. (In Russ.) https://doi.org/10.25016/2541-7487-2016-0-1-79-84

Views: 465


Creative Commons License
This work is licensed under a Creative Commons Attribution 4.0 License.


ISSN 1995-4441 (Print)
ISSN 2541-7487 (Online)