Preview

Medicо-Biological and Socio-Psychological Problems of Safety in Emergency Situations

Advanced search

Damage of bronhopulmonary system as a result of exposure to toxic products of fires and ecologically adverse factors of the chemical nature (nitrogen oxides)

https://doi.org/10.25016/2541-7487-2014-0-2-61-68

Abstract

Nitrogen oxides play a key role in the development of environment-related lung diseases (chronic obstructive pulmonary disease, bronchial asthma, interstitial lung fibrosis) via initiation of bronchoalveolar epithelium damage and cell death. Nitrogen oxides are among the most dangerous air toxicants released during burning of nitrogen-containing polymeric materials. Analysis of recent domestic and foreign publications suggests that the damaging effect of nitrogen dioxide on the bronchial epithelium and lung structure is associated with the initiation of nitrative-oxidative stress in epithelial and alveolar cells. The most vulnerable cells are alveolocytes of 2nd type involved in the surfactant synthesis and representing a pool of progenitor cells with a great reparative potential. Inhaled nitrogen dioxide affects alveolar population of inflammation effector cells, changing their activation status and profile of produced cytokines. Nitrogen dioxide and its reactive forms can act as signaling molecules participating in the transmission of various signals that induce epithelial cell apoptosis or survival. Developing approaches to activate the regenerative potential of lung autologous stem cells and launch the process of damaged epithelium self-healing can be a strategy of bronchial epithelium morphofunctional integrity restoration.

About the Authors

O, N, Titova
Scientific Research Institute of Pulmonology at Pavlov First Saint-Petersburg State Medical University
Russian Federation
Dr. med. Sci.


T. N. Preobrazhenskaya
The Kirov Military Medical Academy
Russian Federation
PhD on Biol. Sci.


Y. S. Lebedeva
Scientific Research Institute of Pulmonology at Pavlov First Saint-Petersburg State Medical University
Russian Federation
PhD on Biol. Sci., Head laboratory of experimental pulmonology and pathomorphology


N. A. Kuzubova
Scientific Research Institute of Pulmonology at Pavlov First Saint-Petersburg State Medical University
Russian Federation
Dr. med. Sci., deputy Director


N. F. Markizova
The Kirov Military Medical Academy
Russian Federation
PhD on Med. Sci., senior lecturer


References

1.

2. Dvorakovskaja I.V., Kuzubova N.A., Fionik A.M. [et al.]. Patologicheskaja anatomija bronhov i respiratornoj tkani krys pri vozdejstvii dioksida azota [Pathological anatomy of bronchial and respiratory tissue of rats when exposed to nitrogen dioxide]. Pul'monologiya [Pulmonology]. 2009. N 1. P. 54–61. (In Russ.)

3. Kutsenko S.A. Osnovy toksikologii [Basics of toxicology]. Sankt_Peterburg. 2004. 720 p. (In Russ.)

4. Lebedeva E.S., Kuzubova N.A., Danilov L.N. [et al.]. Vosproizvedenie v eksperimente khronicheskoi obstruktivnoi bolezni legkikh [Experimental modeling of chronic obstructive pulmonary disease]. Byulleten' eksperimental'noi biologii i meditsiny [Bulletin of Experimental Biology and Medicine]. 2011. N 11. P. 596–600. (In Russ.)

5. Markizova N.F., Preobrazhenskaya T.N., Basharin V.A., Grebenyuk A.N. Toksichnye komponenty pozharov [Toxic components of fires]. Sankt_Peterburg. 2008. 208 p. (In Russ.)

6. Okisly azota. Gigienicheskie kriterii sostoyaniya okruzhayushchei sredy : N 4 [Nitrogen oxides. Hygienic criteria of environment status : N 4]. Geneva : WHO, 1981. 91 p. (In Russ.)

7. Postnikova L.B., Kubysheva N.I., Boldina M.V. [et al.]. Nitrozivnyi stress i rastvorimye differentsirovochnye molekuly pri obostrenii khronicheskoi obstruktivnoi bolezni legkikh [Nitrosative stress and differentiation soluble molecules during exacerbation of chronic obstructive pulmonary disease]. Pul'monologiya [Pulmonology]. 2012. N 1. P. 35–39. (In Russ.)

8. Alessandrini E.R., Faustini A., Chiusolo M. [et al.]. Air pollution and mortality in twenty_five Italian cities: results of the EpiAir2 Project // Epidemiol. Prev. – 2013 – Vol. 37, N 4/5. – P. 220–229

9. Ayyagari V.N., Januszkiewicz A., Nath J. Proinflammatory responses of human bronchial epithelial cells to acute nitrogen dioxide exposure // Toxicology. – 2004. – Vol. 197, N 2. – P. 149–164.

10. Ayyagari V.N., Januszkiewicz A., Nath J. Effects of nitrogen dioxide on the expression of intercellular adhesion molecule_1, neutrophil adhesion, and cytotoxicity: studies in human bronchial epithelial cells // Inhal. Toxicol. – 2007. – Vol. 19, N 2. – P. 181–194.

11. Barttesaghi S., Wenzel J., Trujillo M. [et al.]. Lipid peroxyl radicals mediate tyrosine dimerization and nitration in membranes // Chem. Res. Toxicol. – 2010. – Vol. 23, N 4. – P. 821–835.

12. Bind M.A., Baccarelli A., Zanobetti A. [et al.]. Air pollution and markers of coagulation, inflammation, and endothelial function: associations and epigeneenvironment interactions in an elderly cohort // Epidemiology. – 2012. – Vol. 23, N 2. – P. 332–340.

13. Blount R.J., Djawe K., Daly K.R. [et al.]. Ambient air pollution associated with suppressed serologic responses to Pneumocystis jirovecii in a prospective cohort of HIV_infected patients with Pneumocystis pneumonia // PLoS One. – 2013. – Vol. 8, N 11. – e80795.

14. Bowler R.P., Barnes P.J., Crapo J.D. The role of oxidative stress in chronic obstructive pulmonary disease // COPD. – 2004. – Vol. 1, N 2. P. 255–277.

15. Brandsma C.A., Hylkema M.N., Luinge M.A. [et al.]. Nitrogen dioxide exposure attenuates cigarette smoke_induced cytokine production in mice // Inhal. Toxicol. – 2008. – Vol. 20, N 2. – P. 183–189.

16. Brennan M.L., Wu W., Fu X. [et al.]. A tale of two controversies: defining both the role of peroxidases innitrotyrosine formation in vivo using esosinophil peroxidase and myeloperoxidase_deficient mice, and the nature of peroxidase_generated reactive nitrogen species // J. Biol. Chem. – 2002. – Vol. 277, N 20. – P. 17 415–17 427.

17. Brindicci C., Kharitonov S.A., Ito M. [et al.]. Nitric oxide synthase isoenzyme expression and activity in peripheral lung tissue of patients with chronic obstructive pulmonary disease // Am. J. Respir. Crit. Care Med. – 2010. – Vol. 181, N 1. – P. 21–30.

18. Bubici C., Papa S., Pham C.G. [et al.]. The NFkappaB_mediated control of ROS and JNK signaling // Histol. Histopathol. – 2006. – Vol. 21, N 1. – P. 69–80.

19. Crapo J.D. Oxidative stress as an initiator of cytokine release and cell damage // Eur. Respir. J. – 2003. – Vol. 22, N 44 suppl. – P. 4s–6s.

20. Environmental Protection Agency. Draft Integrated Science Assessment for Nitrogen OxidesHealth Criteria. 2013. – URL: www.federalregister.gov. 20. Fehrenbach H., Zimmermann G., Starke E. [et al.]. Nitrogen dioxide induces apoptosis and proliferation but not emphysema in rat lungs // Thorax. – 2007. – Vol. 62, N 5. – P. 438–446.

21. Garn H., Siese A., Stumpf S. [et al.]. Shift toward an alternatively activated macrophage response in lungs of NO2_exposed rats // Am. J. Respir. Cell. Mol. Biol. – 2003. – Vol. 28, N 3. – P. 386–396.

22. Global Initiative for Chronic Obstructive Lung Disease, NHLBI/WHO workshop report – National HeartLung and Blood Institute, update 2014. – URL: www.goldcopd.com.

23. Gunaydin H., Houk K.N. Mechanisms of peroxynitrite_mediated nitration of tyrosine // Chem. Res. Toxicol. – 2009. – Vol. 22, N 5. – P. 894–898.

24. Han M., Guo Z., Li G., Sang N. Nitrogen dioxide inhalation induces genotoxicity in rats // Chemosphere. – 2013. – Vol. 90, N 11. – P. 2737–2742.

25. Hansel N.N., McCormack M.C., Belli A.J. [et al.]. In_home air pollution is linked to respiratory morbidity in former smokers with chronic obstructive pulmonary disease // Am. J. Respir. Crit. Care Med. – 2013. – Vol. 187, N 10. – P. 1085–1090.

26. Hesterberg T.W., Bunn W.B., McClellan R.O. [et al.]. Critical review of the human data on short_term nitrogen dioxide (NO2) exposures: evidence for NO2 no_effect levels // Crit. Rev. Toxicol. – 2009. – Vol. 39, N 9. – P. 743–781.

27. Ho Y.S,. Liou H.B., Lin J.K. [et al.]. Lipid peroxidation and cell death mechanisms in pulmonary epithelial cells induced by peroxynitrite and nitric oxide // Arch. Toxicol. – 2002. – Vol. 76, N 8. – P. 484– 493.

28. Janssen_Heininger Y.M.W., Persinger R.L., Korn S.H. [et al.]. Reactive nitrogen species and cell signaling. Implications for death or survival of lung epithelium // Am. J. Respir. Crit. Care Med. – 2002. – Vol. 166, N 1. – P. S9–S16.

29. Johnson J.Y., Rowe B.H., Allen R.W. A case_control study of medium_term exposure to ambient nitrogen dioxide pollution and hospitalization for stroke // BMC Public Health. – 2013. – N 13. – P. 368.

30. Kelly F.J., Fussell J.C. Air pollution and airway disease // Clin. Exp. Allergy. – 2011. – Vol. 41, N 8. – P. 1059–1071.

31. Koike E., Kobayashi T., Utsunomiya R. Effect of exposure to nitrogen dioxide on alveolar macrophagemediated immunosuppressive activity in rats // Toxicol. Lett. – 2001. – Vol. 121, N 2. – P. 135–143.

32. Kovacic P., Somanathan R. Pulmonary toxicity and environmental contamination: radicals, electron transfer, and protection by antioxidants // Rev. Environ. Contam. Toxicol. – 2009. – Vol. 201, N 1. – P. 41–69.

33. Lorenzo H.K., Susin S.A., Penninger J., Kroemer G. Apoptosis inducing factor (AIF): a phylogenetically old, caspase_independent effector of cell death // Cell Death Differ. – 1999. – Vol. 6, N 6. – P. 516–524.

34. Nemery B. Respiratory diseases caused by acute inhalation of gases, vapours and dusts // ERS handbook. Respiratory medicine. / Eds. P. Palange, A. Simonds. – Sheffield : Hermes, 2010. – P. 273–277.

35. Persinger R.L., Blay W.M., Heintz N.H. [et al.]. Nitrogen dioxide induces death in lung epithelial cells in a density_dependent manner // Am. J. Respir. Cell Mol. Biol. – 2001. – Vol. 24, N 5. – P. 583–590.

36. Persinger R.L., Poynter M.E., Ckless K., Janssen_Heininger Y. Molecular mechanisms of nitrogen dioxide induced epithelial injury in the lung // Mol. Cell Biochem. – 2002. – Vol. 234/235, N 1/2. – P. 71–80.

37. Radi R. Peroxynitrite, a stealthy biological oxidant // J. Biol. Chem. – 2013. – Vol. 288, N 37. – P. 26 464–26 472.

38. Ricciardolo F.L. Multiple roles of nitric oxide in the airways // Thorax. – 2003. – Vol. 58, N 2. – P. 175–182.

39. Schikowski T., Sugiri D., Ranft U. Long_term air pollution exposure and living close to busy roads are associated with COPD in women // Respir. Res. – 2005. – Vol. 6, N 1. – P. 152–154.

40. Shen H.M., Liu Z.G. JNK signaling pathway is a key modulator in cell death mediated by reactive oxygen and nitrogen species // Free Radic. Biol. Med. – 2006. – Vol. 40, N 6. – P. 928–939.

41. Shrivastava P., Pantano C., Watkin R. [et al.]. Reactive nitrogen species_induced cell death requires Fas_dependent activation of c_Jun N_terminal kinase // Mol. Cell Biol. – 2004. – Vol. 24, N 15. – P. 6763–6772.

42. Su J., Groves J.T. Mechanisms of peroxynitrite interactions with heme proteins // Inorg. Chem. – 2010. – Vol. 49, N 14. – P. 6317–6329.

43. Sugiura H., Ichinose M. Nitrative stress in inflammatory lung diseases // Nitric Oxide. – 2011. – Vol. 25, N 2. – P. 138–144.

44. Takizawa H. Impact of air pollution on allergic diseases // Korean J. Intern. Med. – 2011. – Vol. 26, N 3. – P. 262–273.

45. Van der Vliet A., Eiserich J.P., Shigenaga M.K., Cross C.E. Reactive nitrogen species and tyrosine nitration in the respiratory tract: epiphenomena or a pathobiologic mechanism of disease? // Am. J. Respir. Crit. Care Med. – 1999. – Vol. 160, N 1. – P. 1–9.

46.

47.


Review

For citations:


Titova O.N., Preobrazhenskaya T.N., Lebedeva Y.S., Kuzubova N.A., Markizova N.F. Damage of bronhopulmonary system as a result of exposure to toxic products of fires and ecologically adverse factors of the chemical nature (nitrogen oxides). Medicо-Biological and Socio-Psychological Problems of Safety in Emergency Situations. 2014;(2):61-68. (In Russ.) https://doi.org/10.25016/2541-7487-2014-0-2-61-68

Views: 371


Creative Commons License
This work is licensed under a Creative Commons Attribution 4.0 License.


ISSN 1995-4441 (Print)
ISSN 2541-7487 (Online)