А.В. Коржавин, В.Н. Трапезникова,
А.В. Трапезников, В.Н. Николкин, А.П. Платаев

ПЕРВЫЕ РЕЗУЛЬТАТЫ РАДИОЭКОЛОГИЧЕСКОГО ИССЛЕДОВАНИЯ
ВОДОЕМА-ОХЛАДИТЕЛЯ БЕЛОЯРСКОЙ АЭС ПОСЛЕ ВВОДА
В ЭКСПЛУАТАЦИЮ 4-ГО ЭНЕРГОБЛОКА БН-800

Институт экологии растений и животных Уральского отделения Российской академии наук
(Россия, г. Екатеринбург, ул. 8 Марта, д. 202)

Актуальность. Ввод в эксплуатацию новых мощностей на действующих атомных электростанциях мо-
жет быть сопряжен с увеличением радиационной нагрузки на природную среду и человека. На Белояр-
ской атомной станции (БАЭС) в 2016 г. был введен в эксплуатацию 4-й энергоблок БН-800. В качестве
водоема-охладителя используется образованное в 1959–1963 гг. Белоярское водохранилище. Перед
пуском блока БН-800 в 2014 г. было проведено радиоэкологическое обследование водоема-охладителя,
результаты которого опубликованы в № 2 данного журнала за 2016 г.

Цель – в сравнительном аспекте с результатами предыдущих исследований показать влияние пуска
энергоблока БН-800 на радиоэкологическое состояние водоема-охладителя.

Методология. Исследованы пробы воды и макрофитов (рдест гребенчатый, роголистник темно-зеле-
ный, спирогира, кладофора) в реперных точках водоема-охладителя.

Результаты и их анализ. Установлено, что содержание 137Cs в воде по сравнению с 2014 г. во всех ре-
перных точках (включая сбросной канал 4-го энергоблока) снизилось в 1,4–5,9 раза. Содержание 137Cs
в рдесте гребенчатом из сбросного канала 4-го энергоблока оказалось в 3,1 раза ниже, а 90Sr в 1,4 раза
ниже, чем в макрофитах из реки Пышма ниже плотины.

Заключение. Ввод в эксплуатацию энергоблока БН-800 не сопровождался дополнительной радиаци-
онной нагрузкой на водохранилище и не оказывает отрицательного влияния на процессы самоочищения
водоема после вывода из эксплуатации 1-го и 2-го блоков Белоярской АЭС. Сохранение в дальнейшем
природных ресурсов Белоярского водохранилища предполагает систематическое ведение радиоэко-
логического мониторинга с целью определения уровней содержания долгоживущих радионуклидов в ос-
новных природных компонентах водоема-охладителя.

Ключевые слова: радиобиология, чрезвычайная ситуация, атомная электростанция, водоем-охлади-
тель АЭС, энергоблок БН-800, техногенные радионуклиды, вода, макрофиты.

УДК 574.5 : 502.175 : 621.039.7 (285.2 : 470.54)
Introduction. The objective of the work is to show (comparing with the results of the previous research) the effect of the BN-800 Unit commissioning on the cooling pond radioecological state.

Methodology. The samples of water and macrophytes (Potamogeton pectinatus, Ceratophyllum demersum, Spirogyra, Cladophora) were examined at the reference points of the cooling pond.

Results and Discussion. It was found that 137Cs decreased in the water by 1.4–5.9 times in all reference points (including the 4th NPP Unit discharge channel) compared to 2014. Potamogeton pectinatus (from the 4th NPP Unit discharge channel) had 3.1 times less 137Cs and 1.4 times less 90Sr than macrophytes from the Pyshma river area below the dam.

Conclusion. The BN-800 Unit commissioning was not associated with additional radiation load on the artificial lake. It does not deleteriously affect the natural purification processes after the 1st and 2nd BNPP Units decommissioning. The further preservation of the Beloyarsk artificial lake natural resources assumes a systematic radioecological monitoring to determine the level of long-lived radionuclides in main natural components of the cooling pond.

Keywords: radiobiology, emergency situation, nuclear power plant, NPP cooling pond, BN-800 Unit, artificial radionuclides, water, macrophytes.
ва реакторов на тепловых нейтронах. БН-800 считается безопасной установкой, реактор оборудован дополнительной системой аварийной защиты. Она работает на основе пассивных элементов, которые активизируются при повышении температуры окружающей среды. Проект реактора соответствует всем экологическим требованиям. Так, документацией предусмотрено снижение потребления атмосферного кислорода и органического топлива, утилизация продуктов деления ядерных материалов и других радиоактивных отходов. Энергоблок призван существенно расширить топливную базу атомной энергетики и минимизировать радиоактивные отходы за счет организации замкнутого ядерно-топливного цикла [2, 4–6].

Первые два блока с водографитовыми каналными реакторами АМБ-100 и АМБ-200 функционировали в 1964–1981 гг. и 1967–1989 гг. и были остановлены в связи с выработкой ресурса. Топливо из реакторов выгружено и находится на длительном хранении в специальных бассейнах выдержки, расположенных в одном здании с реакторами. В рамках вывода 1-го и 2-го блоков из эксплуатации с 2017 г. начался вывод ядерного топлива. Все технологические системы, работа которых не требуется по условиям безопасности, остановлены. В работе находятся только вентиляционные системы для поддержания температурного режима в помещениях и система радиационного контроля, работа которых круглосуточно обеспечивается квалифицированным персоналом. В апреле 2014 г. начаты работы по разбору энергоблоков.

Проект реактора БН-800 прошел все экспертизы и проверки. Результаты всех проверок были положительными. И уже в 1997 г. была выдана лицензия Госатомнадзора России на установку реактора. Новый 4-й энергоблок БАЭС с реактором БН-800 27 июня 2014 г. был введен в минимальный контролируемый уровень мощности. 10 декабря 2015 г. блок № 4 включен в сеть и выработал первую электроэнергию в энергосистему Урала. 17 сентября 2016 г. энергоблок № 4 с реактором БН-800 выведен на 100% мощности, а 31 октября 2016 г. — сдан в промышленную эксплуатацию.

Как и любая АЭС, БАЭС является потенциальным источником загрязнения окружающей среды. Выход радиоактивных веществ во внешнюю среду может происходить в ходе штатной работы АЭС, а также при возникновении нештатных ситуаций. За период эксплуатации БАЭС было несколько аварий и серьезных неисправностей. Первая авария произошла 29 мая 1976 г., когда на 2-м блоке при выходе его на мощность после срабатывания аварийной защиты реак-
Медико-биологические и социально-психологические проблемы безопасности в чрезвычайных ситуациях. 2018. № 2

Макрофиты (дредт гребенчатый, роголистник темно-зеленый, спирогира, кладофора) отбирали отбирали в 3–5 кг сырой массы на повторность. Растения отмывали от загрязнений, взвешивали и высушивали до воздушно-сухого состояния, после чего озоляли в муфельной печи при $t = 450^\circ$C.

Материал и методы

Координаты точек отбора проб определяли при помощи спутниковой навигационной системы GPS (табл. 1). Прубы воды для анализов на содержание радионуклидов отбирали в полиэтиленовые емкости и сразу подкисляли азотной кислотой, предотвращая сорбцию радионуклидов на стенках сосудов. Для получения объективных результатов все пробы воды отбирали в двух повторностях по 150 л в каждой. Подготовка пробы воды заключалась в выпаривании воды до сухого остатка. Сухой остаток помещали в муфельную печь при $t = 450^\circ$C на 8 ч. После остывания остаток растирали пестиком до мелкодисперсного порошка.

Материалы и методы

Географические координаты для отбора проб определяли с помощью спутниковой навигационной системы GPS (табл. 1). Пробы воды для анализа на содержание радионуклидов отбирали в полиэтиленовые емкости и сразу подкисляли азотной кислотой, предотвращая сорбцию радионуклидов на стенках сосудов. Для получения объективных результатов все пробы воды отбирали в двух повторностях по 150 л в каждой. Подготовка пробы воды заключалась в выпаривании воды до сухого остатка. Сухой остаток помещали в муфельную печь при $t = 450^\circ$C на 8 ч. После остывания остаток растирали пестиком до мелкодисперсного порошка.

Материалы и методы

Географические координаты для отбора проб определяли с помощью спутниковой навигационной системы GPS (табл. 1). Пробы воды для анализа на содержание радионуклидов отбирали в полиэтиленовые емкости и сразу подкисляли азотной кислотой, предотвращая сорбцию радионуклидов на стенках сосудов. Для получения объективных результатов все пробы воды отбирали в двух повторностях по 150 л в каждой. Подготовка пробы воды заключалась в выпаривании воды до сухого остатка. Сухой остаток помещали в муфельную печь при $t = 450^\circ$C на 8 ч. После остывания остаток растирали пестиком до мелкодисперсного порошка.

Материалы и методы

Географические координаты для отбора проб определяли с помощью спутниковой навигационной системы GPS (табл. 1). Пробы воды для анализа на содержание радионуклидов отбирали в полиэтиленовые емкости и сразу подкисляли азотной кислотой, предотвращая сорбцию радионуклидов на стенках сосудов. Для получения объективных результатов все пробы воды отбирали в двух повторностях по 150 л в каждой. Подготовка пробы воды заключалась в выпаривании воды до сухого остатка. Сухой остаток помещали в муфельную печь при $t = 450^\circ$C на 8 ч. После остывания остаток растирали пестиком до мелкодисперсного порошка.

Материалы и методы

Географические координаты для отбора проб определяли с помощью спутниковой навигационной системы GPS (табл. 1). Пробы воды для анализа на содержание радионуклидов отбирали в полиэтиленовые емкости и сразу подкисляли азотной кислотой, предотвращая сорбцию радионуклидов на стенках сосудов. Для получения объективных результатов все пробы воды отбирали в двух повторностях по 150 л в каждой. Подготовка пробы воды заключалась в выпаривании воды до сухого остатка. Сухой остаток помещали в муфельную печь при $t = 450^\circ$C на 8 ч. После остывания остаток растирали пестиком до мелкодисперсного порошка.

Материалы и методы

Географические координаты для отбора проб определяли с помощью спутниковой навигационной системы GPS (табл. 1). Пробы воды для анализа на содержание радионуклидов отбирали в полиэтиленовые емкости и сразу подкисляли азотной кислотой, предотвращая сорбцию радионуклидов на стенках сосудов. Для получения объективных результатов все пробы воды отбирали в двух повторностях по 150 л в каждой. Подготовка пробы воды заключалась в выпаривании воды до сухого остатка. Сухой остаток помещали в муфельную печь при $t = 450^\circ$C на 8 ч. После остывания остаток растирали пестиком до мелкодисперсного порошка.

Материалы и методы

Географические координаты для отбора проб определяли с помощью спутниковой навигационной системы GPS (табл. 1). Пробы воды для анализа на содержание радионуклидов отбирали в полиэтиленовые емкости и сразу подкисляли азотной кислотой, предотвращая сорбцию радионуклидов на стенках сосудов. Для получения объективных результатов все пробы воды отбирали в двух повторностях по 150 л в каждой. Подготовка пробы воды заключалась в выпаривании воды до сухого остатка. Сухой остаток помещали в муфельную печь при $t = 450^\circ$C на 8 ч. После остывания остаток растирали пестиком до мелкодисперсного порошка.

Материалы и методы

Географические координаты для отбора проб определяли с помощью спутниковой навигационной системы GPS (табл. 1). Пробы воды для анализа на содержание радионуклидов отбирали в полиэтиленовые емкости и сразу подкисляли азотной кислотой, предотвращая сорбцию радионуклидов на стенках сосудов. Для получения объективных результатов все пробы воды отбирали в двух повторностях по 150 л в каждой. Подготовка пробы воды заключалась в выпаривании воды до сухого остатка. Сухой остаток помещали в муфельную печь при $t = 450^\circ$C на 8 ч. После остывания остаток растирали пестиком до мелкодисперсного порошка.

Материалы и методы

Географические координаты для отбора проб определяли с помощью спутниковой навигационной системы GPS (табл. 1). Пробы воды для анализа на содержание радионуклидов отбирали в полиэтиленовые емкости и сразу подкисляли азотной кислотой, предотвращая сорбцию радионуклидов на стенках сосудов. Для получения объективных результатов все пробы воды отбирали в двух повторностях по 150 л в каждой. Подготовка пробы воды заключалась в выпаривании воды до сухого остатка. Сухой остаток помещали в муфельную печь при $t = 450^\circ$C на 8 ч. После остывания остаток растирали пестиком до мелкодисперсного порошка.
Для определения содержания 137Cs в образцах природных сред использовали инструментальные методы. Измерения проводили на низкофоновом полупроводниковом гамма-спектрометре фирмы «Ortec» (США) с коаксиальной детекторной системой на базе высокоочищенного германия (HPGe) с эффективностью 40% при ошибке измерения не более 10% и нижнем пределе обнаружения с учетом концентрирования воды 0,005 Бк/кг.

Определение 90Sr в образцах с низкой активностью проводили радиохимическим методом, основанном на выщелачивании химических элементов 6-нормальной соляной кислотой с последующим осаждением оксалатов щелочно-земельных элементов и выделением из раствора оксалатов 90Sr в виде карбонатов. Содержание 90Sr определяли по дочернему 90Y. β-активность проводили на малофоновой установке УМФ-2000 с нижним пределом обнаружения 0,02 Бк/кг с учетом концентрирования и статистической ошибкой измерения не более 10%.

Достоверность результатов достигали параллельным отбором и исследованием образцов природных сред в двух повторностях. Статистическая обработка результатов заключалась в определении среднего арифметического значения и среднего квадратического отклонения (M ± s). Оценку достоверности различий данных, полученных в 2014 и 2017 гг., проводили с использованием двухвыборочного t-критерия Стьюдента с уровнем статистической значимости 0,05.

Результаты и их анализ
Содержание техногенных радионуклидов в пробах воды. Содержание основных техногенных радионуклидов в воде Белоярского водохранилища представлено в табл. 1. Согласно НРБ 99/2009 [3], уровни вмешательства при содержании в воде отдельных радионуклидов составляют: 90Sr – 4,90 Бк/кг, 137Cs – 11,0 Бк/кг. Таким образом, содержание в воде Белоярского водохранилища в значениях выше указанных уровней вмешательства.

Figure 1 shows the change in artificial radionuclides concentration in the water of the Beloyarsk cooling pond from 2014 (zero level before the 4th BNPP unit commissioning) to 2017 (after the 4th BNPP unit commissioning). It demonstrates a 137Cs decrease in all reference points over the indicated period. Thus, the radionuclide volumic ac-
водохранилища указанных радионуклидов значительно ниже уровня вмешательства. Объемная активность 137Cs на три порядка величин ниже уровня вмешательства, содержание 90Sr – ниже уровня вмешательства на два порядка величин.

На рис. 1 показано изменение содержания техногенных радионуклидов в воде Белоярского водохранилища с 2014 г. (нулевой уровень перед пуском 4-го энергоблока) до 2017 г. (после ввода в эксплуатацию 4-го блока БАЭС). Показано, что во всех реперных точках за указанный период произошло снижение содержания 137Cs. Так, в сбросном канале 4-го энергоблока объемная активность радионуклида снизилась в 1,4 раза, в районе Биофизической станции – в 5,9 раза ($p < 0,05$), в Теплом заливе – в 5,3 раза ($p < 0,05$), а в реке Пышма ниже плотины – в 3 раза ($p < 0,05$).

Изменения содержания 90Sr в воде водохранилища за указанный период менее значительны и в отличие от 137Cs не имеют общей тенденции, характерной для всех реперных точек (табл. 2). Так, в воде Теплого залива содержание 90Sr осталось практически на прежнем уровне, в воде сбросного канала 4-го блока хоть и увеличилось на 21 %, но в пределах статистической погрешности. В реперных точках, расположенных в районе Биофизической станции и на реке Пышма, объемная активность 90Sr уменьшилась в 1,8 ($p < 0,05$) и 2,2 раза ($p < 0,05$) соответственно.

Содержание радионуклидов в водных растениях. Водные растения поглощают поступающие радионуклиды, и в течение многих лет их активность может оставаться высокой. Концентрация многих радионуклидов в водных растениях может превышать их концентрацию в воде в прослеживаемых концентрациях. В таблице 3 приведена концентрация 90Sr и 137Cs в водных растениях, содержащихся в воде Белоярского водохранилища.

\[\text{Рис. 1. Содержание радионуклидов в воде водоема-охладителя Белоярской АЭС в 2014 г. и 2017 г.} \]

\[\text{Fig. 1. Radionuclides Content in the Water of the Beloyarsk NPP Cooling Pond in 2014 and 2017.}\]
Содержание радионуклидов в воде Белоярского водохранилища

<table>
<thead>
<tr>
<th>Место отбора проб</th>
<th>Проба</th>
<th>Радионуклид, Бк/кг</th>
<th>Radionuclide, Bq/kg</th>
</tr>
</thead>
<tbody>
<tr>
<td>Сбросной канал 4-го энергоблока</td>
<td>Повторная № 1</td>
<td>0.0073 ± 0.00068</td>
<td>0.024 ± 0.002</td>
</tr>
<tr>
<td>4-й NPP Unit discharge channel</td>
<td>Repeated sample No.1</td>
<td>0.0055 ± 0.00045</td>
<td>0.010 ± 0.0007</td>
</tr>
<tr>
<td></td>
<td>Повторная № 2</td>
<td>0.0064 ± 0.0009</td>
<td>0.017 ± 0.007</td>
</tr>
<tr>
<td></td>
<td>Repeated sample No.2</td>
<td>0.0025 ± 0.00037</td>
<td>0.014 ± 0.0009</td>
</tr>
<tr>
<td></td>
<td>Средняя</td>
<td>0.0039 ± 0.00034</td>
<td>0.008 ± 0.0005</td>
</tr>
<tr>
<td></td>
<td>Average sample</td>
<td>0.0032 ± 0.0007</td>
<td>0.011 ± 0.003</td>
</tr>
<tr>
<td>Район Биофизической станции</td>
<td>Повторная № 1</td>
<td>0.0045 ± 0.00031</td>
<td>0.010 ± 0.0007</td>
</tr>
<tr>
<td>Biophysical station area</td>
<td>Repeated sample No.1</td>
<td>0.0034 ± 0.00045</td>
<td>0.016 ± 0.001</td>
</tr>
<tr>
<td></td>
<td>Повторная № 2</td>
<td>0.0040 ± 0.0006</td>
<td>0.013 ± 0.003</td>
</tr>
<tr>
<td></td>
<td>Repeated sample No.2</td>
<td>0.0029 ± 0.00039</td>
<td>0.006 ± 0.0004</td>
</tr>
<tr>
<td></td>
<td>Средняя</td>
<td>0.0036 ± 0.00028</td>
<td>0.016 ± 0.001</td>
</tr>
<tr>
<td></td>
<td>Average sample</td>
<td>0.0033 ± 0.00035</td>
<td>0.011 ± 0.005</td>
</tr>
<tr>
<td>Теплый залив</td>
<td>Повторная № 1</td>
<td>0.0045 ± 0.00031</td>
<td>0.010 ± 0.0007</td>
</tr>
<tr>
<td>Warm Bay</td>
<td>Repeated sample No.1</td>
<td>0.0034 ± 0.00045</td>
<td>0.016 ± 0.001</td>
</tr>
<tr>
<td></td>
<td>Повторная № 2</td>
<td>0.0040 ± 0.0006</td>
<td>0.013 ± 0.003</td>
</tr>
<tr>
<td></td>
<td>Repeated sample No.2</td>
<td>0.0029 ± 0.00039</td>
<td>0.006 ± 0.0004</td>
</tr>
<tr>
<td></td>
<td>Средняя</td>
<td>0.0036 ± 0.00028</td>
<td>0.016 ± 0.001</td>
</tr>
<tr>
<td></td>
<td>Average sample</td>
<td>0.0033 ± 0.00035</td>
<td>0.011 ± 0.005</td>
</tr>
<tr>
<td>р. Пышма, ниже плотины</td>
<td>Повторная № 1</td>
<td>0.0045 ± 0.00031</td>
<td>0.010 ± 0.0007</td>
</tr>
<tr>
<td>The Pyshma River, area lower the dam</td>
<td>Repeated sample No.1</td>
<td>0.0034 ± 0.00045</td>
<td>0.016 ± 0.001</td>
</tr>
<tr>
<td></td>
<td>Повторная № 2</td>
<td>0.0040 ± 0.0006</td>
<td>0.013 ± 0.003</td>
</tr>
<tr>
<td></td>
<td>Repeated sample No.2</td>
<td>0.0029 ± 0.00039</td>
<td>0.006 ± 0.0004</td>
</tr>
<tr>
<td></td>
<td>Средняя</td>
<td>0.0036 ± 0.00028</td>
<td>0.016 ± 0.001</td>
</tr>
<tr>
<td></td>
<td>Average sample</td>
<td>0.0033 ± 0.00035</td>
<td>0.011 ± 0.005</td>
</tr>
</tbody>
</table>

В водную среду радионуклиды, при этом концентрация многих из них в тканях растений может длительное время поддерживаться на высоком уровне, превышающем на порядки величин их концентрацию в воде [8]. Содержание 90Sr и 137Cs в водных растениях Белоярского водохранилища показано в табл. 3.

В 2017 г. на водохранилище отобраны для исследования четыре вида водной растительности: рдест гребенчатый, роголистник темно-зеленый, спирогира, кладофора. Показательно, что в ряде реперных точек для исследования удалось отобрать аналогичные виды растений. Рдест гребенчатый отобран в сбросном канале 4-го блока и реке Пышма. Установлено, что в растениях из реки Пышма содержание 90Sr в 1,4 раза, а 137Cs в 3,1 раза выше, чем в растениях из сбросного канала 4-го блока. Роголистник темно-зеленый исследован в районе Биофизической станции и Теплом заливе. При этом содержание 137Cs в 2,7 раза выше в растениях, отобраных из Теплого залива, а содержание 90Sr, напротив, в 1,7 раза оказалось выше в роголистнике в районе Биофизической станции.

В 2014 г. из-за неблагоприятных погодных условий в достаточном количестве удалось отобрать и исследовать только два вида водных растений: роголистник темно-зеленый из Теплого залива и рдест гребенчатый из Промливневого канала.
Содержание радионуклидов в водных растениях

<table>
<thead>
<tr>
<th>Место отбора проб</th>
<th>Вид растения</th>
<th>Проба</th>
<th>Радионуклид, Бк/кг</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td></td>
<td>137Cs</td>
</tr>
<tr>
<td>Сбросной канал 4-го энергоблока</td>
<td>Рдест гребенчатый</td>
<td>Повторная № 1</td>
<td>8.7 ± 1.1</td>
</tr>
<tr>
<td>4 th NPP Unit discharge channel</td>
<td>Potamogeton pectinatus</td>
<td>Repeated sample No.1</td>
<td>12.9 ± 1.3</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Repeated sample No.2</td>
<td>10.8 ± 2.1</td>
</tr>
<tr>
<td>Район Биофизической станции</td>
<td>Роголистник темно-зеленый</td>
<td>Повторная № 1</td>
<td>11.5 ± 1.5</td>
</tr>
<tr>
<td>Biophysical station area</td>
<td>Ceratophyllum demersum</td>
<td>Repeated sample No.1</td>
<td>12.6 ± 1.4</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Repeated sample No.2</td>
<td>12.05 ± 0.55</td>
</tr>
<tr>
<td>Теплый залив</td>
<td>Роголистник темно-зеленый</td>
<td>Повторная № 1</td>
<td>31.9 ± 1.7</td>
</tr>
<tr>
<td>Warm Bay</td>
<td>Ceratophyllum demersum</td>
<td>Repeated sample No.1</td>
<td>33.3 ± 1.5</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Repeated sample No.2</td>
<td>32.6 ± 0.7</td>
</tr>
<tr>
<td></td>
<td>Спирогира</td>
<td>Повторная № 1</td>
<td>21.1 ± 1.9</td>
</tr>
<tr>
<td></td>
<td>Spirogyra</td>
<td>Repeated sample No.1</td>
<td>26.6 ± 1.3</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Repeated sample No.2</td>
<td>23.85 ± 2.75</td>
</tr>
<tr>
<td>р. Пышма, ниже плотины</td>
<td>Рдест гребенчатый</td>
<td>Повторная № 1</td>
<td>33.4 ± 2.1</td>
</tr>
<tr>
<td>The Pyshma River, area lower the dam</td>
<td>Potamogeton pectinatus</td>
<td>Repeated sample No.1</td>
<td>33.5 ± 1.8</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Repeated sample No.2</td>
<td>33.45 ± 0.05</td>
</tr>
<tr>
<td></td>
<td>Кладофора</td>
<td>Повторная № 1</td>
<td>32.8 ± 1.6</td>
</tr>
<tr>
<td></td>
<td>Cladophora</td>
<td>Repeated sample No.1</td>
<td>28.5 ± 1.9</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Repeated sample No.2</td>
<td>30.65 ± 2.15</td>
</tr>
</tbody>
</table>

Содержание 137Cs в роголистнике темно-зеленом из Теплого залива в 2014 г. и 2017 г. сопоставимо между собой, небольшая разница укладывается в пределы статистической погрешности. По содержанию 90Sr различия существенные. В 2014 г. содержание 90Sr в 4,3 раза было выше ($p < 0,05$), чем в 2017 г. (рис. 2).

Накопительную способность растений оценивали величиной коэффициента накопления (КН), представляющего собой отношение концентрации нуклида в растениях к его концентрации в воде. КН радионуклидов в водных растениях в 2017 г. представлены на рис. 3.

Более высокие КН у всех видов водных растений получены для 137Cs (от 1688 до 10136 ед.). Для 90Sr показатели КН несколько ниже – от 558 до 3136. По месту произрастания наиболее высокие КН 137Cs

Plant accumulation capacity was evaluated using concentration factor (CR), i.e. ratio of nuclide concentration in plants to its concentration in water. Radionuclides CR in plants for 2017 is presented in Figure 3.

Higher CR for all species of aquatic plants is obtained for 137Cs (from 1,688 to 10,136 units). 90Sr CR is slightly lower – from 558 to 3,136. Regarding plants origin, the higher 137Cs CR was observed for species from the Warm Bay and the Pyshma River. Regarding plant species, the higher 137Cs CR was obtained for Potamogeton pectinatus (10136) and Cladophora (9288) from the Pyshma River; it is slightly lower for Ceratophyllum demersum (8150) and Spirogyra (5963) from the Warm Bay. 90Sr CR appeared to be
наблюдались у растений из Теплого залива и реки Пышма. По видам растений высокие значения КН 137Cs получены для рдеста гребенчатого (10136) и кладофоры (9288) из реки Пышма, несколько ниже — для роголистника темно-зеленого (8150). lower: 3,136 for Cladophora from the Pyshma River, 2,362 for Spirogyra from the Warm Bay. Yet lower CR was observed for Ceratophyllum demersum from the Biophysical station area (137Cs – 3,766 units and 90Sr – 1,114 units).

Рис. 2. Содержание радионуклидов в роголистнике темно-зеленом и рдесте гребенчатом водоема-охладителя Белоярской АЭС в 2014 г. и 2017 г.
Fig. 2. Radionuclides Content in Ceratophyllum Demersum and Potamogeton Pectinatus of the Beloyarsk NPP Cooling Pond in 2014 and 2017

Рис. 3. Коэффициенты накопления радионуклидов в водных растениях водоема-охладителя Белоярской АЭС.
Fig. 3. Concentration factors of radionuclides in Aquatic Plants of the Beloyarsk NPP Cooling Pond.
и спирогиры (5963) из Теплого залива. Для 90Sr КН оказались более низкими, так у кладофоры из реки Пышма КН составил 3136, у спирогиры из Теплого залива – 2362. Еще более низкие КН были отмечены у роголистника темно-зеленного в районе Биофизической станции (3766 ед. по 137Cs и 1114 ед. по 90Sr) и рдеста гребенчатого из сбросного канала 4-го энергоблока (1688 ед. по 137Cs и 859 ед. по 90Sr).

По сравнению с 2014 г. в 2017 г. в целом для 137Cs несколько выросли, а для 90Sr –снизились. Так, для роголистника темно-зеленного из Теплого залива КН по 137Cs увеличился в 5,9 раза, а по 90Sr, напротив, уменьшился в 4,7 раза. Для рдеста гребенчатого из Промливневого канала аналога (включая сбросной канал 4-го энергоблока) по 137Cs несколько выросли, а для 90Sr –снизились.

Обсуждение. Известно, что радионуклиды в компонентах пресноводных экосистем распределяются неравномерно. На основании многолетних натурных исследований, было установлено, что основным депо радионуклидов в пресноводных водоемах являются донные отложения, в реках – пойменные почвы и донные отложения пойменных водоемов, которые поглощают более 80% радиоактивных веществ, затем следует водная компонента (в пределах от долей процента до 20%) и, наконец, гидробионт (так, макрофиты могут аккумулировать в общей сложности доли процента от суммарной активности в водоеме). Но при этом следует учитывать, что донные отложения хоть и накапливают значительное количество радионуклидов, но отражают их интегральные запасы, аккумулированные за многолетний период существования водоема. Более оперативную информацию о текущем состоянии водного объекта можно получить по результатам исследовании воды и водной растительности. Результаты исследования воды отражают в основном свежие загрязнения, а макрофиты аккумулируют радионуклиды в течение вегетативного периода. Результаты исследования воды в 2017 г. показывают, что, несмотря на ввод дополнительных мощностей на БАЭС, во всех реперных точках (включая сбросной канал 4-го энергоблока) по сравнению с 2014 г. наблюдалось существенное снижение содержания 137Cs в воде в 1,4–5,9 раза, что указывает на отсутствие дополнительного поступления радионуклида в водоем-охладитель после пуска в эксплуатацию 4-го энергоблока.

Изменения содержания 90Sr менее значимы и не имеют общей выраженной тенденции. В воде Теплого залива содержание 90Sr не изменилось, в воде сбросного канала 4-го блока – незначительно увеличилось в пределах статистической погрешности, а в районе Биофизической станции и реке Пышма – уменьшилось в 1,8 и 2,2 раза со-

units) and Potamogeton pectinatus from the 4th NPP Unit discharge channel (137Cs – 1,688 units and 90Sr – 859 units).

In general, 137Cs CR slightly increased and 90Sr CR decreased in 2017 comparing to 2014. Thus, 137Cs CR increased by 5.9 times whereas 90Sr CR decreased by 4.7 times for Ceratophyllum demersum from the Warm Bay. There was impossible to compare CR for Potamogeton pectinatus from Industrial-storm water channel in 2017, but its 137Cs CR was 2,656 units and 90Sr CR – 4,706 units in 2014.

Discussion. It is known that radionuclides in freshwater ecosystems components are distributed unevenly. Long-standing nature research has found that the main radionuclides depots in freshwater lakes are benthal deposits, in rivers – flood plain soils and flood plain lakes benthal deposits which absorb over 80% of radioactive substancs. They are followed by water component (from a fracture of a percent to 20%) and finally by hydrobionts (as macrophytes can accumulate in total fractions of a percent from the total radionuclide activity in the lake). Herewith, it should be borne in mind that benthal deposits may accumulate a significant quantity of radionuclides, but reflect their integral stocks accumulated over the long time period of the lake existence. More operative information on present state of the water object can be obtained using the results of water and aquatic plants research. Water research results reflect basically fresh contamination, while macrophytes accumulate radionuclides during the vegetative period. Despite BNPP additional unit commissioning, the results of water research in 2017 showed that all reference points (including the 4th NPP Unit discharge channel) had a considerable 137Cs decrease by 1.4–5.9 times in the water comparing to 2014, i. e. indicating the absence of additional radionuclides release into the cooling pond after the 4th Unit commissioning.

90Sr changes were less considerable, without clear trends. 90Sr concentration did not change in the water of the Warm Bay, increased slightly within statistical error in the water of the 4th NPP Unit discharge channel, decreased by 1.8 and 2.2 times in the Biophysical station area and the Pyshma River, respectively. Such different scenarios can be explained by different mechanisms of radionuclides release into the cooling pond. If
ответственно. Такое разное поведение радионуклидов можно объяснить разными механизмами их поступления в водоем-охладитель. Если основным путем поступления 137Cs в водоем-охладитель всегда считался Промливневый канал, т. е. смывы с территории станции, напротив, 90Sr имеет в основном глобальное происхождение и не связан с деятельностью атомной станции.

Отсутствие дополнительного поступления радионуклидов с 4-го энергоблока подтверждается также относительно низким содержанием последних в водных растениях сбросного канала. Пробы рдеста гребенчатого были отобраны параллельно в сбросном канале 4-го блока и реке Пышма ниже плотины, где интегрируются все сбросы с водоема-охладителя. В результате содержание 137Cs в рдесте гребенчатого было значительно ниже, чем в рдесте гребенчатом из сбросного канала. По результатам углубленного радиоэкологического обследования водоема-охладителя в 2011 г. было показано, что на протяжении более 20-летнего периода произошло существенное снижение содержания радионуклидов в основных компонентах водоема-охладителя БАЭС. Объемная активность 60Co в воде Теплого залива уменьшилась в 800 раз и более, в Промливневом канале – в 5600 раз. Объемная активность 137Cs в воде Теплого залива уменьшилась более чем в 100 раз, в воде из Промливневого канала – снизилась в 386 раз. Объемная активность 90Sr в тех же точках снизилась в 3 и 5,7 раза соответственно. Столь существенные изменения радиоэкологического состояния водоема-охладителя в 2011 г. по сравнению с 1976–1987 гг. стали возможны под влиянием ряда причин. Во-первых, вывод из эксплуатации 1-го и 2-го блоков БАЭС. Во-вторых, как результат работы в большом временном диапазоне механизмов самоочищения водной экосистемы от радионуклидов за счет распада радиоактивных веществ, а также механизмов перераспределения радионуклидов из воды в другие компоненты, прежде всего – в растения (7).

Таким образом, ввод в эксплуатацию энергоблока БН-800 БАЭС не сопровождался дополнительной радиационной нагрузкой на водоем-охладитель и не оказывал отрицательного влияния на процессы самоочищения, которые наметились в данной водной экосистеме после вывода из эксплуатации 1-го и 2-го блоков БАЭС. Industrial-storm water channel has always been considered as a main source of 137Cs entry into the cooling pond, i. e. washouts from the station territory; 90Sr, on the contrary, has mainly a global origin and is not related to the NPP operation.

Absence of additional radionuclides from the 4th NPP Unit is also confirmed by their relatively low concentration in the aquatic plants of the discharge channel. Potamogeton pectinatus was sampled simultaneously in the 4th NPP Unit discharge channel and the Pyshma River area below the dam where all discharges from the cooling pond are integrated. The content of 137Cs and 90Sr in Potamogeton pectinatus from the 4th NPP Unit discharge channel was 3.1 and 1.4 times lower than from the Pyshma River, respectively.

Changes of radionuclides concentrations in the cooling pond over the period of 2014–2017 are completely consistent with long-standing processes of the present water ecosystem. Thus, advanced radioecological research of the cooling pond in 2011 comparing to earlier long-time observations in 1976–1987 showed a considerable decrease in radionuclides concentration in main components of the BNPP cooling pond over more than 20-year period. 59Co volumic activity in the water of the Warm Bay decreased by 800 times and more, in Industrial-storm water channel – by 5,600 times. 137Cs volumic activity in the water of the Warm Bay decreased by over 100 times and in Industrial-storm water channel – by 386 times. 90Sr volumic activity in the same points decreased by 3 and 5.7 times, respectively. Such considerable changes in radioecological state of the cooling pond in 2011 comparing to 1976–1987 became possible due to a number of reasons. Firstly, 1st and 2nd BNPP Units were decommissioned. Secondly, it was the result of long-time work of mechanisms of water ecosystem natural purification from radionuclides by radioactive substances decay as well as mechanisms of radionuclides redistribution from water into other components, to benthal deposits above all (7).
Выводы

1. После ввода в эксплуатацию энергоблока БН-800 в воде Белоярского водохранилища наблюдалось снижение содержания 137Cs в 1,4–5,9 раза по сравнению с 2014 г. (нулевой уровень перед пуском энергоблока), что свидетельствует об отсутствии дополнительного поступления радионуклида в водоем-охладитель.

2. Изменения содержания 90Sr менее значимы и не имеют общеизвестной тенденции. Это объясняется разными механизмами поступления радионуклидов в водоем-охладитель. Основным путем поступления 137Cs в водоем-охладитель всегда являлся Промптивный канал, т.е. смыв с территории станции. 90Sr, напротив, имеет в основном глобальное происхождение и не связан с деятельностью атомной станции.

3. Отсутствие дополнительного поступления радионуклидов с 4-го энергоблока БН-800 подтверждается результатами исследования параллельных проб водных растений из сбросного канала 4-го энергоблока и реки Пышма ниже плотины, где интегрируются все сбросы с водоема-охладителя. Содержание 137Cs в рдесте гребенчатом из сбросного канала 4-го энергоблока и реки Пышма ниже плотины, где интегрируются все сбросы с водоема-охладителя, содержание 137Cs в воде Белоярского водохранилища, т.е. смывы с территории станции, 90Sr, напротив, имеет в основном глобальное происхождение и не связан с деятельностью атомной станции.

4. Динамика изменения содержания радионуклидов в водоеме-охладителе в период 2014–2017 гг., в полной мере согласуется с общими процессами самоочищения, которые стали возможны в данной водной экосистеме после вывода из эксплуатации 1-го и 2-го блоков Белоярской АЭС.

Литература

Conclusion

1. After BN-800 commissioning, 137Cs decreased by 1.4–5.9 times in the water of the Beloyarsk artificial lake comparing to 2014 (zero level before the unit commissioning) confirming the absence of additional radionuclides entry into the cooling pond.

2. Changes in 90Sr content are less considerable and have no general trends, which can be explained by different mechanisms of radionuclides release into the cooling pond. Industrial-storm water channel has always been a main source of 137Cs entry into the cooling pond, i.e. washouts from the station territory; 90Sr, on the contrary, has mainly a global origin and is not related to the NPP activity.

3. Absence of additional entry of the BN-800 Unit radionuclides is also confirmed by research of parallel samples of the aquatic plants from the 4th NPP discharge channel and the Pyshma River area lower the dam where all discharges from the cooling pond are integrated. The content of 137Cs and 90Sr in Potamogeton pectinatus from the 4th NPP Unit discharge channel was 3.1 and 1.4 times lower than from the Pyshma River, respectively.

4. Changes in radionuclides concentrations in the cooling pond over the period of 2014–2017 are completely consistent with general processes of purification, which became possible in the present water ecosystem due to the 1st and 2nd BNPP Units decommissioning.

References

Авторы декларируют отсутствие явных и потенциальных конфликтов интересов, связанных с публикацией статьи. Отбор проб материала из водоема-охладителя, пробоподготовка и измерение концентраций 137Cs и 90Sr в воде и водных растениях, а также интерпретация результатов выполнены в рамках государственного задания Института экологии растений и животных УрО РАН.
Поступила 17.04.2018 г.

Для цитирования. Коржавин А.В., Трапезникова В.Н., Трапезников А.В., Николкин В.Н., Платеев А.П. Первые результаты радиоэкологического исследования водоема-охладителя Белоярской АЭС после ввода в эксплуатацию 4-го энергоблока BN-800 // Медико-биол. и соци.-психол. проблемы безопасности в чрезвычайных ситуациях. 2018. № 2. С. 70–82. DOI 10.25016/2541-7487-2018-0-2-70-82

Authors declare the absence of existing and potential conflicts of interest concerning the article publication. Sampling from the cooling pond, sample preparation, 137Cs and 90Sr concentration measurement in water and aquatic plants as well as interpretation of results are performed in the framework of the State Task of the Institute of Plant and Animal Ecology, Ural Branch of the Russian Academy of Sciences. Received 17.04.2018
