УДК 614.8 : 340.64 DOI 10.25016/2541-7487-2016-0-3-85-89

А. А. Пучков, В. П. Лаврентьев, С. В. Кузнецов

МЕТОДИКА БЕЗРАСЧЕТНОЙ СУДЕБНО-ГЕНЕТИЧЕСКОЙ ИДЕНТИФИКАЦИИ ПРИМЕНИТЕЛЬНО К ЧРЕЗВЫЧАЙНЫМ СИТУАЦИЯМ

Главное следственное управление Следственного комитета Российской Федерации по Санкт-Петербургу (Россия, Санкт-Петербург, наб. реки Мойки, д. 86/88); Санкт-Петербургский государственный аграрный университет (Россия, Санкт-Петербург, г. Пушкин, Петербургское шоссе, д. 2)

Раскрыт аспект идентификации личности в условиях чрезвычайных ситуаций, а именно, проблема совершенствования последнего этапа производства судебно-генетической экспертизы – оценки полученных результатов. В случаях исследования объектов, содержащих ДНК одного лица, определено достаточное количество локусов для дачи категоричного вывода о происхождении биологического материала от конкретного лица на основании только прямого сравнения их генетических профилей без вероятностно-статистической оценки и математических расчетов.

Ключевые слова: чрезвычайная ситуация, судебная медицина, судебно-генетическая экспертиза, ДНК, биологический след, идентификация личности.

Введение

С каждым годом в чрезвычайных ситуациях все больше изымаются идентификационно-значимые биологические объекты с дальнейшим назначением на судебно-генетическую экспертизу (исследование ДНК биологических тканей и выделений человека). Также увеличиваются круг задач и перечень вопросов, которые решает и на которые может ответить данный вид экспертного исследования. Назначение сравнительных экспертиз, требующих сложных расчетов, увеличивает время на оформление результатов исследования и дачу заключения, что, в свою очередь, идет вразрез с задачей по идентификации личности в предельно короткий срок.

В последнее время в достаточной степени обновилась материально-техническая база ДНК-лабораторий, появились автоматические приборы для выделения ДНК, автоматические станции дозирования жидкостей, способные сократить время технического этапа производства экспертизы. Все это обусловливает актуальность совершенствования последнего этапа производства судебногенетической экспертизы, а именно оценки полученных результатов.

При исследовании объектов, содержащих ДНК одного лица, оценка результатов прово-

дится по нескольким методикам, предлагаемым различными министерствами и ведомствами.

1. Согласно методическим рекомендациям, применяемым в экспертных учреждениях МВД России [5], главное назначение применения законов теории вероятностей заключается не в простом расчете какого-то значения вероятности, а в определении степени его стремления к значению достоверного или невозможного события. В случаях установления генетических профилей, свойственных для одного человека, вероятностно-статистическая оценка идентификационной значимости результатов исследования проводится методом вероятности случайного совпадения признаков. Для этого рассчитывается значение вероятности встречаемости в популяции лица, обладающего определенными генетическими признаками по ряду локусов, что проводится согласно теореме умножения вероятностей (произведение вероятностей встречаемости признаков, вычисленных по каждому из локусов):

$$P = P_1 \times P_2 \times ... \times P_n$$

где P_1 , P_2 , ... P_n – значения вероятностей встречаемости признаков, вычисленных по локусам, обозначенным номерами 1, 2, ... n.

Пучков Александр Анатольевич – эксперт эксперт.-криминалистич. отд. управления криминалистики Гл. следствен. управления Следственного комитета России по Санкт-Петербургу (Россия, 190000, Санкт-Петербург, наб. реки Мой-ки, д. 86/88), e-mail: Pu4kov@yandex.ru;

Лаврентьев Вячеслав Петрович – эксперт эксперт.-криминалистич. отд. управления криминалистики Гл. следствен. управления Следственного комитета России по Санкт-Петербургу (Россия, 190000, Санкт-Петербург, наб. реки Мойки, д. 86/88), e-mail: Slavr84@yandex.ru;

Кузнецов Семен Валерьевич – канд. мед. наук доц., эксперт эксперт.-криминалистич. отд. управления криминалистики Гл. следствен. управления Следственного комитета России по Санкт-Петербургу (Россия, 190000, Санкт-Петербург, наб. реки Мойки, д. 86/88); доцент юрид. фак-та С.-Петерб. гос. аграр. ун-та (Россия, 196601, Санкт-Петербург, г. Пушкин, Петербургское ш., д. 2), e-mail: Nachsml@mail.ru.

Вероятность (Р) выражается через частоту встречаемости в популяции индивидуума, обладающего выявленным генетическим профилем. В случаях, когда частота встречаемости в популяции индивидуума, обладающего выявленным генетическим профилем, превышает количество населения Земли, выносится категоричное суждение о происхождении выявленных биологических следов от конкретного лица.

2. Согласно действующим в экспертных учреждениях Минздрава России методическим указаниям [1], проблема оценки вероятности решается с помощью формулы расчета инкриминирующей вероятности IP (от англ. Inrriminating Probability):

$$IP = 1 / (1 + Q),$$

где Q - это частота генотипа.

Эту (еще называемую байесовой) вероятность (IP) генетической общности происхождения объектов выражают в процентах: IP • 100 = %.

Несмотря на различные подходы этих двух методик к оценке полученных результатов, в начале экспертного исследования их алгоритм схож и предусматривает 3 основных этапа установления идентификационной значимости ДНК:

1-й – прямое сравнение аллелей, выявленных в исследованном объекте и образце лица, по соответствующим друг другу локусам;

2-й - вероятностно-статистическая оценка;

3-й – формирование вывода о происхождении объекта от конкретного лица на основе полученного значения вероятности.

Если при прямом сравнении соответствующих друг другу стандартных 16 локусов ДНК, исследованных в объекте и образце лица (1-й этап), выявлено полное совпадение аллелей этих локусов, то для формирования категоричного вывода о происхождении биологического материала от данного лица требуется проведение вероятностно-статистической оценки данного совпадения. Накопленный опыт авторов в выполнении сравнительных экспертиз свидетельствует о том, что результатом такой вероятностно-статистической обработки всегда является математическая величина, с избытком подтверждающая категоричный положительный вывод о тождестве.

С целью оптимизации оценки результатов при исследовании объектов, содержащих ДНК одного лица, была поставлена цель –

определить минимально достаточное количество локусов для достоверного заключения о происхождении биологического материала от конкретного лица на основании только прямого сравнения их генетических профилей без вероятностно-статистической оценки и математических расчетов.

Материал и методы

Для реализации цели выбрали следующие локусы ДНК: CSF1PO, D3S 1358, D5S 818, D7S 820, D8S 1179, D13S 317, D16S 539, D18S 51, D21S 11, TH01, TPOX, vWA (табл. 1, 2). Исследование указанных локусов является обязательным:

- согласно информационному письму первого заместителя председателя Следственного комитета Российской Федерации «О мерах по повышению эффективности использования в доказывании по уголовным делам следов биологического происхождения человека» (исх. № 214/1–1839–14/6706 от 22.01.2014 г.);
- для формирования Федеральной базы данных геномной информации [4];
- они входят в состав большинства наборов для амплификации, наиболее часто используемых для выполнения экспертиз по исследованию ДНК как генетическими лабораториями экспертно-криминалистических подразделений МВД России, так и лабораториями Бюро судебно-медицинской экспертизы Минздрава РФ.

Искусственно сформировали теоретически возможный генетический профиль (далее профиль лица «А»). Основополагающими условиями формирования указанного профиля лица «А» являются гетерозиготность по каждому из 12 приведенных локусов и включение аллелей

Таблица 1
Значения частот встречаемости аллелей генетического профиля лица «А»

Исследованный локус	Аллель	Встречаемость аллелей
D8S1179	13 / 14	0,3223 / 0,2146
D21S11	29 / 30	0,1935 / 0,2479
D7S820	10 / 11	0,2724 / 0,2246
CSF1PO	10 / 12	0,2791 / 0,3167
D3S 1358	15 / 16	0,2677 / 0,2667
TH01	6/9.3	0,2454 / 0,2800
D13S317	11 / 12	0,3462 / 0,2259
D16S539	11 / 12	0,2710 / 0,3153
√WA	17 / 18	0,2844 / 0,2232
TPOX	8 / 11	0,5388 / 0,2719
D18S51	14 / 16	0,1667 / 0,1606
D5S818	11 / 12	0,3297 / 0,3475

с наибольшей частотой встречаемости (см. табл. 1) на основании данных о частоте встречаемости аллелей у жителей России [2].

Результаты и их анализ

Проведен расчет вероятности случайного совпадения генетических признаков лица «А» с объектом, имеющим аналогичную генетическую характеристику, и получен результат 6.872 • 10⁻¹¹, это означает, что теоретически в среднем один из 1 • 10¹⁰ человек мог образовать генетический профиль лица «А». Полученное значение вероятности превышает меру, обозначаемую в некоторых работах как «эталонное число» [3], что свидетельствует о том, что среди населения Земли (эталонное число около 7 • 10⁹ человек) возможно существование только одного лица «А», обладающего заданными ранее сочетаниями генетических признаков.

При расчетах вероятностей случайного совпадения генетических признаков лица «А» с объектом, имеющим аналогичную генетическую характеристику, по всем возможным вариантам заданного генетического профиля по 11 локусам и менее получены значения, не позволяющие вынести категоричные суждения о существовании только одного лица «А», обладающего заданными ранее сочетаниями генетических признаков.

В качестве примера описан случай идентификации генетических профилей идентифицируемого лица и следов ДНК, представленных на экспертизу. Судебно-генетическое исследование проведено по стандартным ДНК-маркерам (локусам ДНК): D8S 1179, D21S11, D7S 820, CSF1PO, D3S 1358, TH01, D13S 317, D16S 539, D2S 1338, D19S 433, WWA, TPOX, D18S 51, Amelogenin, D5S 818, FGA.

В результате исследования установлены генетические характеристики условных образцов ДНК лица «Б», погибшего в авиационной катастрофе (эпителий с зубной щетки, используемой им при жизни), а также ДНК останков, требующих идентификации (см. табл. 2). Номера аллелей в генетической характеристике исследованного объекта и аллелей в генотипе типированного лица изменены с целью защиты персональных данных.

Сравнение данных 15 аутосомных локусов по содержащимся в них аллелям показало полное совпадение, что, исходя из определенного ранее минимального достаточного количества совпадающих локусов (равного 12, а также с учетом соблюдения условия включения в анализируемую совокупность локу-

Таблица 2 Установленные генетические профили объекта и идентифицируемого лица

Исследованный локус	ДНК останков, требующих идентификации	Образец ДНК идентифицируе- мого лица «Б»
D8S1179	23 / 24	23 / 24
D21S11	37 / 40	37 / 40
D7S820	20 / 21	20 / 21
CSF1PO	20 / 20	20 / 20
D3S 1358	25 / 26	25 / 26
TH01	17 / 18	17 / 18
D13S317	21 / 22	21 / 22
D 16S 539	19 / 22	19 / 22
D2S 1338	26 / 35	26 / 35
D 19S 433	23 / 24	23 / 24
∨WA	26 / 26	26 / 26
TPOX	19 / 19	19 / 19
D18S51	25 / 26	25 / 26
Amelogenin	X/Y	X/Y
D5S818	21 / 23	21 / 23
FGA	33 / 34	33 / 34

сов: CSF1PO, D3S1358, D5S818, D7S820, D8S1179, D13S317, D16S539, D18S51, D21S11, TH01, TPOX, WWA), позволило сделать вывод о тождестве. Данный вывод был перепроверен с помощью вероятностно-статистической оценки по обеим методикам, используемым на сегодня в России [1, 5], расчеты по которым подтвердили, что биологический материал с места катастрофы произошел от лица «Б».

Заключение

установ-Проведенным исследованием лено, что прямое сравнение генетических профилей ДНК несмешанного биологического объекта и ДНК одного лица по 12 локусам и более (с обязательным включением локусов ДНК: CSF1PO, D3S1358, D5S818, D7S820, D8S1179, D13S317, D16S539, D18S51, D21S11, TH01, TPOX и wwA) достаточно для формирования категоричного суждения о происхождении указанного объекта от конкретного лица и применимо при оценке результатов в судебно-генетической экспертной практике. Единственным условием эффективного использования изложенной методики является исходное наличие генетического профиля идентифицируемого лица по представленным локусам ДНК.

Литература

1. Иванов П.Л. Использование индивидуализирующих систем на основе полиморфизма длины амплифицированных фрагментов (ПДАФ) ДНК

- в судебно-медицинской экспертизе идентификации личности и установления родства: метод. указания: утв. приказом Минздрава РФ от 19.01.1999 г. № 98/253 / URL: http://base.consultant.ru/.
- 2. Культин А.Ю., Стороженко И.В. Применение частот встречаемости аллелей аутосомных STR-локусов для повышения идентификационной значимости результатов исследования ДНК: метод. рекомендации. М.: ЭКЦ МВД России, 2013. 48 с.
- 3. Кузнецов С.В. Судебно-медицинская статистическая оценка происхождения смешанных
- следов крови // Вестн. Сев.-Зап. гос. мед. ун-та им. И.И. Мечникова. 2016. Т 8, № 1. 2016. С. 79–86.
- 4. Об организации использования экспертнокриминалистических учетов органов внутренних дел Российской Федерации: приказ МВД РФ от 10.02.2006 г. № 70, в ред. приказа МВД РФ от 21.05.2008 г. № 436. URL: http://base.consultant.ru/.
- 5. Пименов М. Г., Культин А. Ю., Кондрашов С. А. Научные и практические аспекты криминалистического ДНК-анализа: учеб. пособие. М: ГУ ЭКЦ МВД России, 2001. 144 с.

Авторы декларируют отсутствие явных и потенциальных конфликтов интересов, связанных с публи-кацией статьи.

Поступила 26.05.2016

Для цитирования. Пучков А.А., Лаврентьев В.П., Кузнецов С.В. Методика безрасчетной судебно-генетической идентификации применительно к случаям чрезвычайных ситуаций // Мед.-биол. и соц.-психол. пробл. безопасности в чрезв. ситуациях. 2016. № 3. С. 85–89. DOI 10.25016/2541-7487-2016-0-3-85-89

The method of non-calculation forensic genetic identification in case of emergencies

Puchkov A. A.¹, Lavrentiev V. P.¹, Kuznetsov S. V.^{1,2}

¹ Main Investigation Department of the Investigative Committee of the Russian Federation in Saint Petersburg (Russia, 190000, Saint-Petersburg, emb. Moika river, 86/88);

² Saint Petersburg State Agrarian University (Russia, 196601, Saint Petersburg, Pushkin, route Peterburgskoe, 2)

Aleksander Anatolyevich Puchkov – expert, Forensic Department of Criminology, Main Investigation Department of the Investigative Committee of the Russian Federation in St. Petersburg (Russia, 190000, St. Petersburg, emb. Moika river, 86/88), e-mail: Pu4kov@yandex.ru;

Vyacheslav Petrovich Lavrentiev – expert, Forensic Department of Criminology, Main Investigation Department of the Investigative committee of the Russian Federation in St. Petersburg (Russia, 190000, St. Petersburg, emb. Moika river, 86/88), e-mail: Slavr84@yandex.ru;

Semyon Valeryevich Kuznetsov – PhD Med. Sci., expert, Forensic Department of Criminology, Main Investigation Department of the Investigative Committee of the Russian Federation in St. Petersburg (Russia, 190000, St. Petersburg, emb. Moika river, 86/88); Associate Prof. of Law Faculty, St. Petersburg State Agrarian University (Russia, 196601, St. Petersburg, Pushkin, route Peterburgskoe, 2), e-mail: Nachsml@mail.ru.

Abstract. One of the aspects of personality identification in emergency situations is described, namely improvement of the last stage of judicial-genetic examination – the evaluation of the obtained results. When examining objects that contain DNA of one person, a sufficient number of loci were identified to categorically conclude about the origin of biological material from a specific person based only on direct comparison of their genetic profiles without probabilistic-statistical evaluation and mathematical calculations.

Keywords: emergency, forensic medicine, judicial-genetic examination, DNA, biological trace, personal identification.

References

- 1. Ivanov P. L. Ispol'zovanie individualiziruyushchikh sistem na osnove polimorfizma dliny amplifitsirovannykh framentov (PDAF) DNK v sudebno-meditsinskoi ekspertize identifikatsii lichnosti i ustanovleniya rodstva: metodicheskie ukazaniya: utverzhdeny prikazom Ministerstva zdravookhraneniya Rossii ot 19.01.1999 N 98/253 [The Use of Individualizing Systems Based on the Amplified DNA Fragments Length Polymorphism (AFLP) in Forensic Medical Personal Identification and Kinship Tests: methodical instruction: approved by order of Ministry of health of the Russian Federation of 19.01.1999 N 98/253]. URL: http://base.consultant.ru/. (In Russ.)
- 2. Kul'tin A. Yu., Storozhenko I. V. Primenenie chastot vstrechaemosti allelei autosomnykh STR-lokusov dlya povysheniya identifikatsionnoi znachimosti rezul'tatov issledovaniya DNK: metodicheskie rekomendatsii [The use of frequencies of occurrence of alleles of autosomal STR loci to improve the identification value of DNA research]. Moskva. 2013. 48 p. (In Russ.)
- 3. Kuznetsov S. V. Sudebno-meditsinskaya statisticheskaya otsenka proishozhdeniya smeshannykh sledov krovi [Forensic statistical evaluation of origin of mixed blood traces]. *Vestnik Severo-Zapadnogo gosudarstvennogo meditsinskogo universiteta im. I. I. Mechnikova* [Herald of the Northwestern State Medical University named after I. I. Mechnikov]. 2016. Vol. 8, N 1. Pp. 79–86. (In Russ.)

- 4. Ob organizatsii ispol'zovaniya ekspertno-kriminalisticheskikh uchetov organov vnutrennikh del Rossiiskoi Federatsii: prikaz Ministerstva vnutrennikh del Rossii ot 10.02.2006 N 70 [About organizing the use of forensic accounting of the Ministry of Internal Affairs of the Russian Federation: order of Ministry of Internal Affairs of the Russian Federation of 10.02.2006 N 70]. URL: http://base.consultant.ru/. (In Russ.)
- 5. Pimenov M.G., Kul'tin A. Yu., Kondrashov S.A. Nauchnye i prakticheskie aspekty kriminalisticheskogo DNK-analiza [Scientific and practical aspects of forensic DNA analysis]. Moskva. 2001. 144 p. (In Russ.)

 Received 26.05.2016

For citing: Puchkov A. A., Lavrentiev V. P., Kuznetsov S. V. Metodika bezraschetnoi sudebno-geneticheskoi identifikatsii primenitel'no k sluchayam chrezvychainykh situatsii. *Mediko-biologicheskie i sotsial'no-psikhologicheskie problemy bezopasnosti v chrezvychaynykh situatsiyakh.* 2016. N 3. Pp. 85–89. **(In Russ.)**

Puchkov A.A., Lavrentiev V.P., Kuznetsov S.V. The method of non-calculation forensic genetic identification in case of emergencies. *Medico-Biological and Socio-Psychological Problems of Safety in Emergency Situations*. 2016. N3. Pp. 85–89. DOI 10.25016/2541-7487-2016-0-3-85-89

15.06.2016 г. во Всероссийском центре экстренной и радиационной медицины им. А. М. Никифорова МЧС России состоялся 4-й выпуск специалистов, обучающихся в институте дополнительного профессионального образования «Экстремальная медицина».

Дипломы об окончании аспирантуры получили Е.В. Муллина – по специальности внутренние болезни (научный руководитель проф. С.С. Бацков), М.С. Гудилов – хирургия (проф. А.В. Кочетков), А.В. Тарасов – внутренние болезни и клиническая лабораторная диагностика (проф. В.Н. Хирманов и В.Ю. Кравцов).

Дипломы об окончании ординатуры получили М.Ш. Ахмедов по специальности хирургия, П.С. Бакетин – урология, А.В. Молодкин и Е.А. Негода – офтальмология, Е.В. Светкина – клиническая лабораторная диагностика, И.В. Стрижеус и М.Д. Черняев – рентгенология.

